Abstract

Flexoelectricity is a universal phenomenon present in all dielectrics that couples electrical polarization to strain gradients and vice-versa. Thus, structures and configurations that permit large strain gradients facilitate the design of an enhanced electromechanical coupling. In a recent work, we demonstrated the prospects for using crumpling of essentially arbitrary thin sheets for energy harvesting. Crumples, with their defect-like nature, admit singular and rapidly varying deformation fields and are thus ideal for engineering sharp non-uniformities in the strain field. In this work, we consider how to tune the design of crumpled sheets for a significant flexoelectric response. Specifically, we analytically derive the electromechanical coupling for a thin crumpled sheet with varying thickness and graded Young’s modulus as key design variables. We show that the electromechanical coupling of such crumpled sheets can be tuned to be nearly five times those of the homogeneous film.

References

1.
Wang
,
B.
,
Yang
,
S.
, and
Sharma
,
P.
,
2019
, “
Flexoelectricity As a Universal Mechanism for Energy Harvesting From Crumpling of Thin Sheets
,”
Phys. Rev. B
,
100
(
3
), p.
035438
.
2.
Tagantsev
,
A. K.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B Conden. Matter
,
34
(
8
), p.
5883
.
3.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
, pp.
387
421
.
4.
Mao
,
S.
, and
Purohit
,
P. K.
,
2014
, “
Insights Into Flexoelectric Solids From Strain-Gradient Elasticity
,”
J. Appl. Mech.
,
81
(
8
), p.
081004
.
5.
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2015
, “
Flexoelectricity in Two-Dimensional Crystalline and Biological Membranes
,”
Nanoscale
,
7
(
40
), pp.
16555
16570
.
6.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on An Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
7.
Maranganti
,
R.
,
Sharma
,
N.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green’s Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
8.
Sharma
,
N. D.
,
Landis
,
C. M.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
(
2
), p.
523
.
9.
Fousek
,
J.
,
Cross
,
L. E.
, and
Litvin
,
D. B.
,
1999
, “
Possible Piezoelectric Composites Based on the Flexoelectric Effect
,”
Mater. Lett.
,
39
(
5
), pp.
287
291
.
10.
Chu
,
B.
,
Zhu
,
W.
,
Li
,
N.
, and
Cross
,
L. E.
,
2009
, “
Flexure Mode Flexoelectric Piezoelectric Composites
,”
J. Appl. Phys.
,
106
(
10
), p.
2069
.
11.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y. W.
,
Purohit
,
P. K.
, and
Mcalpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
.
12.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Çağin
,
T.
,
2009
, “
Dramatic Enhancement in Energy Harvesting for a Narrow Range of Dimensions in Piezoelectric Nanostructures
,”
Phys. Rev. B
,
78
(
12
), p.
121407(R)
.
13.
Jiang
,
X.
,
Huang
,
W.
, and
Zhang
,
S.
,
2013
, “
Flexoelectric Nano-Generator: Materials, Structures and Devices
,”
Nano Energy
,
2
(
6
), pp.
1079
1092
.
14.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids. Struct.
,
51
(
18
), pp.
3218
3225
.
15.
Choi
,
S. B.
, and
Kim
,
G. W.
,
2017
, “
Measurement of Flexoelectric Response in Polyvinylidene Fluoride Films for Piezoelectric Vibration Energy Harvesters
,”
J. Phys. D Appl. Phys.
,
50
(
7
), p.
075502
.
16.
Rahmati
,
A. H.
,
Yang
,
S.
,
Bauer
,
S.
, and
Sharma
,
P.
,
2019
, “
Nonlinear Bending Deformation of Soft Electrets and Prospects for Engineering Flexoelectricity and Transverse (d31) Piezoelectricity
,”
Soft. Matter.
,
15
(
1
), pp.
127
148
.
17.
Wang
,
Z.
,
Zhang
,
X. X.
,
Wang
,
X.
,
Yue
,
W.
,
Li
,
J.
,
Miao
,
J.
, and
Zhu
,
W.
,
2013
, “
Giant Flexoelectric Polarization in a Micromachined Ferroelectric Diaphragm
,”
Adv. Funct. Mater.
,
23
(
1
), pp.
124
132
.
18.
Abdollahi
,
A.
, and
Arias
,
I.
,
2015
, “
Constructive and Destructive Interplay Between Piezoelectricity and Flexoelectricity in Flexural Sensors and Actuators
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121003
.
19.
Bhaskar
,
U. K.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Solanas
,
E.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2016
, “
Flexoelectric Mems: Towards An Electromechanical Strain Diode
,”
Nanoscale
,
8
(
3
), pp.
1293
1298
.
20.
Bhaskar
,
U. K.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Wang
,
Z.
,
Schlom
,
D. G.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2016
, “
A Flexoelectric Microelectromechanical System on Silicon
,”
Nat. Nanotechnol.
,
11
(
3
), pp.
263
266
.
21.
Petrov
,
A. G.
,
2002
, “
Flexoelectricity of Model and Living Membranes
,”
BBA – Biomembranes
,
1561
(
1
), pp.
1
25
.
22.
Petrov
,
A. G.
,
2006
, “
Electricity and Mechanics of Biomembrane Systems: Flexoelectricity in Living Membranes
,”
Anal. Chim. Acta.
,
568
(
1–2
), pp.
70
83
.
23.
Liu
,
L. P.
, and
Sharma
,
P.
,
2013
, “
Flexoelectricity and Thermal Fluctuations of Lipid Bilayer Membranes: Renormalization of Flexoelectric, Dielectric, and Elastic Properties
,”
Phys. Rev. E
,
87
(
3
), pp.
1079
1094
.
24.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids.
,
62
, pp.
209
227
.
25.
Brownell
,
W. E.
,
Spector
,
A. A.
,
Raphael
,
R. M.
, and
Popel
,
A. S.
,
2001
, “
Micro- and Nanomechanics of the Cochlear Outer Hair Cell
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
169
194
.
26.
Vasquez-Sancho
,
F.
,
Abdollahi
,
A.
,
Damjanovic
,
D.
, and
Catalan
,
G.
,
2018
, “
Flexoelectricity in Bones
,”
Adv. Mater.
,
30
(
1705316
), pp.
1
5
.
27.
Deng
,
Q.
,
Ahmadpoor
,
F.
,
Brownell
,
W. E.
, and
Sharma
,
P.
,
2019
, “
The Collusion of Flexoelectricity and Hopf Bifurcation in the Hearing Mechanism
,”
J. Mech. Phys. Solids.
,
130
, pp.
245
261
.
28.
Porenta
,
T.
,
Ravnik
,
M.
, and
Zumer
,
S.
,
2010
, “
Effect of Flexoelectricity and Order Electricity on Defect Cores in Nematic Droplets
,”
Soft. Matter.
,
7
(
1
), pp.
132
136
.
29.
Mao
,
S.
, and
Purohit
,
P. K.
,
2015
, “
Defects in Flexoelectric Solids
,”
J. Mech. Phys. Solids.
,
84
, pp.
95
115
.
30.
Catalan
,
G.
,
Lubk
,
A.
,
Vlooswijk
,
A. H. G.
,
Snoeck
,
E.
,
Magen
,
C.
,
Janssens
,
A.
,
Rispens
,
G.
,
Rijnders
,
G.
,
Blank
,
D. H. A.
, and
Noheda
,
B.
,
2011
, “
Flexoelectric Rotation of Polarization in Ferroelectric Thin Films
,”
Nat. Mater.
,
10
(
12
), pp.
963
967
.
31.
Glinchuk
,
M. D.
,
Eliseev
,
E. A.
, and
Morozovska
,
A. N.
,
2016
, “
Spontaneous Flexoelectric Effect in Nanosystems (topical Review)
,”
Ferroelectrics
,
500
(
1
), pp.
90
98
.
32.
Cao
,
Y.
,
Morozovska
,
A.
, and
Kalinin
,
S. V.
,
2017
, “
Pressure-Induced Switching in Ferroelectrics: Phase-Field Modeling, Electrochemistry, Flexoelectric Effect, and Bulk Vacancy Dynamics
,”
Phys. Rev. B
,
96
(
18
), p.
184109.1
.
33.
Mbarki
,
R.
,
Baccam
,
N.
,
Dayal
,
K.
, and
Sharma
,
P.
,
2014
, “
Piezoelectricity Above the Curie Temperature? Combining Flexoelectricity and Functional Grading to Enable High-Temperature Electromechanical Coupling
,”
Appl. Phys. Lett.
,
104
(
12
), p.
122904
.
34.
Qu
,
Y.
,
Jin
,
F.
, and
Yang
,
J.
,
2020
, “
Effects of Mechanical Fields on Mobile Charges in a Composite Beam of Flexoelectric Dielectrics and Semiconductors
,”
J. Appl. Phys.
,
127
(
19
), p.
194502
.
35.
Codony
,
D.
,
Gupta
,
P.
,
Marco
,
O.
, and
Arias
,
I.
,
2021
, “
Modeling Flexoelectricity in Soft Dielectrics At Finite Deformation
,”
J. Mech. Phys. Solids.
,
146
, p.
104182
.
36.
Grasinger
,
M.
,
Mozaffari
,
K.
, and
Sharma
,
P.
,
2021
, “
Flexoelectricity in Soft Elastomers and the Molecular Mechanisms Underpinning the Design and Emergence of Giant Flexoelectricity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
21
), p.
e2102477118
.
37.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Electrets in Soft Materials: Nonlinearity, Size Effects, and Giant Electromechanical Coupling
,”
Phys. Rev. E
,
90
(
1
), p.
012603
.
38.
Wen
,
X.
,
Li
,
D.
,
Tan
,
K.
,
Deng
,
Q.
, and
Shen
,
S.
,
2019
, “
Flexoelectret: An Electret With a Tunable Flexoelectriclike Response
,”
Phys. Rev. Lett.
,
122
(
14
), p.
148001
.
39.
Ahmadpoor
,
F.
,
Deng
,
Q.
,
Liu
,
L. P.
, and
Sharma
,
P.
,
2013
, “
Apparent Flexoelectricity in Lipid Bilayer Membranes Due to External Charge and Dipolar Distributions
,”
Phys. Rev. E
,
88
(
5
), p.
050701
.
40.
Darbaniyan
,
F.
,
Dayal
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2019
, “
Designing Soft Pyroelectric and Electrocaloric Materials Using Electrets
,”
Soft. Matter.
,
15
(
2
), pp.
262
277
.
41.
Chandratre
,
S.
, and
Sharma
,
P.
,
2012
, “
Coaxing Graphene to Be Piezoelectric
,”
Appl. Phys. Lett.
,
100
(
2
), p.
183
.
42.
Sharma
,
P.
,
2004
, “
Size-Dependent Elastic Fields of Embedded Inclusions in Isotropic Chiral Solids
,”
Int. J. Solids. Struct.
,
41
(
22–23
), pp.
6317
6333
.
43.
Dumitric
,
T.
,
Landis
,
C. M.
, and
Yakobson
,
B. I.
,
2002
, “
Curvature-Induced Polarization in Carbon Nanoshells
,”
Chem. Phys. Lett.
,
360
(
1–2
), pp.
182
188
.
44.
Kalinin
,
S. V.
, and
Meunier
,
V.
,
2008
, “
Electronic Flexoelectricity in Low-Dimensional Systems
,”
Phys. Rev. B
,
77
(
3
), p.
033403
.
45.
Mohammadi
,
P.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
A Theory of Flexoelectric Membranes and Effective Properties of Heterogeneous Membranes
,”
J. Appl. Mech.
,
81
(
1
), p.
011007
.
46.
Lobkovsky
,
A.
,
Gentges
,
S.
,
Li
,
H.
,
Morse
,
D.
, and
Witten
,
T. A.
,
1995
, “
Scaling Properties of Stretching Ridges in a Crumpled Elastic Sheet
,”
Science
,
270
(
5241
), pp.
1482
1485
.
47.
Amar
,
M. B.
, and
Pomeau
,
Y.
,
1997
, “
Crumpled Paper
,”
Proc. R. Soc. A
,
453
(
1959
), pp.
729
755
.
48.
Cerda
,
E.
, and
Mahadevan
,
L.
,
1998
, “
Conical Surfaces and Crescent Singularities in Crumpled Sheets
,”
Phys. Rev. Lett.
,
80
(
11
), pp.
2358
2361
.
49.
Cerda
,
E.
,
Chaieb
,
S.
,
Melo
,
F.
, and
Mahadevan
,
L.
,
1999
, “
Conical Dislocations in Crumpling
,”
Nature
,
401
(
6748
), pp.
46
46
.
50.
Cerda
,
E.
, and
Mahadevan
,
L.
,
2005
, “
Confined Developable Elastic Surfaces: Cylinders, Cones and the Elastica
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
461
(
2055
), pp.
671
700
.
51.
Kodali
,
P.
,
Saravanavel
,
G.
, and
Sambandan
,
S.
,
2017
, “
Crumpling for Energy: Modeling Generated Power From the Crumpling of Polymer Piezoelectric Foils for Wearable Electronics
,”
Flex. Print. Electron.
,
2
(
3
), p.
035005
.
52.
Liu
,
L.
,
2013
, “
On Energy Formulations of Electrostatics for Continuum Media
,”
J. Mech. Phys. Solids.
,
61
(
4
), pp.
968
990
.
53.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Rational Mech. Anal.
,
16
(
1
), pp.
51
78
.
54.
Sharma
,
N. D.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids.
,
55
(
11
), pp.
2328
2350
.
55.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Theory of Elasticity
,
Pergamon Press, New York
.
56.
Petrov
,
A. G.
, and
Podgornik
,
R.
,
2000
, “
The Lyotropic State of Matter: Molecular Physics and Living Matter Physics
,”
Phys. Today.
,
53
(
9
), pp.
67
68
.
You do not currently have access to this content.