Abstract

In the process of inflammation, the hydrodynamic process of circulating leukocyte recruitment to the inflammatory site requires the rolling adhesion of leukocytes in blood vessels mediated by selectin and integrin molecules. Although a number of experiments have demonstrated that cooperative effects exist between selectins and integrins in leukocyte rolling adhesion under shear flow, the mechanisms underlying how the mechanics of selectins and integrins synergistically may govern the dynamics of cell rolling is not yet fully resolved. To address this issue, here we theoretically investigate selectin and integrin jointly mediated rolling adhesion of leukocyte in shear flow, by considering two pairs’ binding/unbinding events as Markov processes and describing kinetics of leukocyte by the approach of continuum mechanics. Through examining the dynamics of leukocyte rolling as a function of relative fraction of selectin and integrin pairs, we show that, during recruitment, the elongation of intermittent weak selectin bonds consuming the kinetic energy of rolling leukocyte decelerates the rolling speed and enables the integrin pairs to form strong bonds, therefore achieving the arrestment of leukocyte (firm adhesion). The co-existence of selectins and integrins may also be required for effective phase transition from firm adhesion to rolling adhesion due to dynamic competition in pairs’ formation and elongation. These results are verified by the relevant Monte Carlo simulations and related to reported experimental observations.

References

1.
Anderson
,
D. C.
, and
Springer
,
T. A.
,
1987
, “
Leukocyte Adhesion Deficiency: An Inherited Defect in the Mac-1, Lfa-1, and P150, 95 Glycoproteins
,”
Annu. Rev. Med.
,
38
(
1
), pp.
175
194
.
2.
Jung
,
U.
,
Norman
,
K. E.
,
Scharffetter-Kochanek
,
K.
,
Beaudet
,
A. L.
, and
Ley
,
K.
,
1998
, “
Transit Time of Leukocytes Rolling Through Venules Controls Cytokine-Induced Inflammatory Cell Recruitment In Vivo
,”
J. Clin. Invest.
,
102
(
8
), pp.
1526
1533
.
3.
Haier
,
J.
, and
Nicolson
,
G. L.
,
2001
, “
Tumor Cell Adhesion Under Hydrodynamic Conditions of Fluid Flow
,”
Apmis
,
109
(
4
), pp.
241
262
.
4.
Osborn
,
L.
,
1990
, “
Leukocyte Adhesion to Endothelium in Inflammation
,”
Cell
,
62
(
1
), pp.
3
6
.
5.
Ley
,
K.
,
Allietta
,
M.
,
Bullard
,
D. C.
, and
Morgan
,
S.
,
1998
, “
Importance of E-selectin for Firm Leukocyte Adhesion in Vivo
,”
Circ. Res.
,
83
(
3
), pp.
287
294
.
6.
Marshall
,
B. T.
,
Long
,
M.
,
Piper
,
J. W.
,
Yago
,
T.
,
McEver
,
R. P.
, and
Zhu
,
C.
,
2003
, “
Direct Observation of Catch Bonds Involving Cell-Adhesion Molecules
,”
Nature
,
423
(
6936
), pp.
190
193
.
7.
Edwards
,
E. E.
, and
Thomas
,
S. N.
,
2017
, “
P-Selectin and ICAM-1 Synergy in Mediating THP-1 Monocyte Adhesion in Hemodynamic Flow Is Length Dependent
,”
Integr. Biol.
,
9
(
4
), pp.
313
327
.
8.
McDonough
,
D. B.
,
McIntosh
,
F. A.
,
Spanos
,
C.
,
Neelamegham
,
S.
,
Goldsmith
,
H. L.
, and
Simon
,
S. I.
,
2004
, “
Cooperativity Between Selectins and β 2-Integrins Define Neutrophil Capture and Stable Adhesion in Shear Flow
,”
Ann. Biomed. Eng.
,
32
(
9
), pp.
1179
1192
.
9.
Mayadas
,
T. N.
,
Johnson
,
R. C.
,
Rayburn
,
H.
,
Hynes
,
R. O.
, and
Wagner
,
D. D.
,
1993
, “
Leukocyte Rolling and Extravasation are Severely Compromised in P Selectin-Deficient Mice
,”
Cell
,
74
(
3
), pp.
541
554
.
10.
Phillips
,
J. W.
,
Barringhaus
,
K. G.
,
Sanders
,
J. M.
,
Hesselbacher
,
S. E.
,
Czarnik
,
A. C.
,
Manka
,
D.
,
Vestweber
,
D.
,
Ley
,
K.
, and
Sarembock
,
I. J.
,
2003
, “
Single Injection of P-selectin Or P-Selectin Glycoprotein Ligand-1 Monoclonal Antibody Blocks Neointima Formation After Arterial Injury in Apolipoprotein E-deficient Mice
,”
Circulation
,
107
(
17
), pp.
2244
2249
.
11.
Fuxe
,
J.
,
Lashnits
,
E.
,
O’Brien
,
S.
,
Baluk
,
P.
,
Tabruyn
,
S. P.
,
Kuhnert
,
F.
,
Kuo
,
C.
,
Thurston
,
G.
, and
McDonald
,
D. M.
,
2010
, “
Angiopoietin/tie2 Signaling Transforms Capillaries Into Venules Primed for Leukocyte Trafficking in Airway Inflammation
,”
Am. J. Pathol.
,
176
(
4
), pp.
2009
2018
.
12.
Nageh
,
M. F.
,
Sandberg
,
E. T.
,
Marotti
,
K. R.
,
Lin
,
A. H.
,
Melchior
,
E. P.
,
Bullard
,
D. C.
, and
Beaudet
,
A. L.
,
1997
, “
Deficiency of Inflammatory Cell Adhesion Molecules Protects Against Atherosclerosis in Mice
,”
Arterioscler., Thromb., Vasc. Biol.
,
17
(
8
), pp.
1517
1520
.
13.
Morikis
,
V. A.
,
Chase
,
S.
,
Wun
,
T.
,
Chaikof
,
E. L.
,
Magnani
,
J. L.
, and
Simon
,
S. I.
,
2017
, “
Selectin Catch-Bonds Mechanotransduce Integrin Activation and Neutrophil Arrest on Inflamed Endothelium Under Shear Flow
,”
Blood
,
130
(
19
), pp.
2101
2110
.
14.
Cao
,
J.
,
Huang
,
D.
, and
Peppas
,
N. A.
,
2020
, “
Advanced Engineered Nanoparticulate Platforms to Address Key Biological Barriers for Delivering Chemotherapeutic Agents to Target Sites
,”
Adv. Drug. Delivery. Rev.
,
167
, pp.
170
188
.
15.
Korn
,
C.
, and
Schwarz
,
U.
,
2008
, “
Dynamic States of Cells Adhering in Shear Flow: From Slipping to Rolling
,”
Physical Review E
,
77
(
4
), p.
041904
.
16.
Li
,
L.
,
Tang
,
H.
,
Wang
,
J.
,
Lin
,
J.
, and
Yao
,
H.
,
2018
, “
Rolling Adhesion of Cell in Shear Flow: a Theoretical Model
,”
J. Mech. Phys. Solids.
,
119
, pp.
369
381
.
17.
Li
,
L.
,
Kang
,
W.
, and
Wang
,
J.
,
2020
, “
Mechanical Model for Catch-Bond-Mediated Cell Adhesion in Shear Flow
,”
Int. J. Mol. Sci.
,
21
(
2
), p.
584
.
18.
Dong
,
C.
, and
Lei
,
X. X.
,
2000
, “
Biomechanics of Cell Rolling: Shear Flow, Cell-Surface Adhesion, and Cell Deformability
,”
J. Biomech.
,
33
(
1
), pp.
35
43
.
19.
Moshaei
,
M. H.
,
Tehrani
,
M.
, and
Sarvestani
,
A.
,
2019
, “
Rolling Adhesion of Leukocytes on Soft Substrates: Does Substrate Stiffness Matter
?”
J. Biomech.
,
91
, pp.
32
42
.
20.
Dasanna
,
A. K.
,
Lansche
,
C.
,
Lanzer
,
M.
, and
Schwarz
,
U. S.
,
2017
, “
Rolling Adhesion of Schizont Stage Malaria-Infected Red Blood Cells in Shear Flow
,”
Biophys. J.
,
112
(
9
), pp.
1908
1919
.
21.
Dong
,
C.
,
Cao
,
J.
,
Struble
,
E. J.
, and
Lipowsky
,
H. H.
,
1999
, “
Mechanics of Leukocyte Deformation and Adhesion to Endothelium in Shear Flow
,”
Ann. Biomed. Eng.
,
27
(
3
), pp.
298
312
.
22.
Khismatullin
,
D. B.
, and
Truskey
,
G. A.
,
2005
, “
Three-Dimensional Numerical Simulation of Receptor-Mediated Leukocyte Adhesion to Surfaces: Effects of Cell Deformability and Viscoelasticity
,”
Phys. Fluids.
,
17
(
3
), p.
031505
.
23.
Hammer
,
D. A.
, and
Apte
,
S. M.
,
1992
, “
Simulation of Cell Rolling and Adhesion on Surfaces in Shear Flow: General Results and Analysis of Selectin-Mediated Neutrophil Adhesion
,”
Biophys. J.
,
63
(
1
), pp.
35
57
.
24.
Bhatia
,
S. K.
,
King
,
M. R.
, and
Hammer
,
D. A.
,
2003
, “
The State Diagram for Cell Adhesion Mediated by Two Receptors
,”
Biophys. J.
,
84
(
4
), pp.
2671
2690
.
25.
Eniola
,
A. O.
,
Willcox
,
P. J.
, and
Hammer
,
D. A.
,
2003
, “
Interplay Between Rolling and Firm Adhesion Elucidated With a Cell-Free System Engineered With Two Distinct Receptor-Ligand Pairs
,”
Biophys. J.
,
85
(
4
), pp.
2720
2731
.
26.
Novikova
,
E. A.
, and
Storm
,
C.
,
2021
, “
Evolving Roles and Dynamics for Catch and Slip Bonds During Adhesion Cluster Maturation
,”
Physical Review E
,
103
(
3
), p.
032402
.
27.
Schubert
,
G.
,
1967
, “
Viscous Flow Near a Cusped Corner
,”
J. Fluid. Mech.
,
27
(
4
), pp.
647
656
.
28.
Yao
,
H.
,
2013
, “
A Generalized Model for Adhesive Contact Between a Rigid Cylinder and a Transversely Isotropic Substrate
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011027
.
29.
Grover
,
W. H.
,
Bryan
,
A. K.
,
Diez-Silva
,
M.
,
Suresh
,
S.
,
Higgins
,
J. M.
, and
Manalis
,
S. R.
,
2011
, “
Measuring Single-Cell Density
,”
Proc. Natl. Acad. Sci. USA
,
108
(
27
), pp.
10992
10996
.
30.
Lawrence
,
M. B.
, and
Springer
,
T. A.
,
1991
, “
Leukocytes Roll on a Selectin at Physiologic Flow Rates: Distinction From and Prerequisite for Adhesion Through Integrins
,”
Cell
,
65
(
5
), pp.
859
873
.
31.
Schmid-Schoenbein
,
G. W.
,
Fung
,
Y. -C.
, and
Zweifach
,
B. W.
,
1975
, “
Vascular Endothelium-Leukocyte Interaction; Sticking Shear Force in Venules
,”
Circ. Res.
,
36
(
1
), pp.
173
184
.
32.
Bell
,
G. I.
,
Dembo
,
M.
, and
Bongrand
,
P.
,
1984
, “
Cell Adhesion. Competition Between Nonspecific Repulsion and Specific Bonding
,”
Biophys. J.
,
45
(
6
), p.
1051
.
33.
Qian
,
J.
,
Wang
,
J.
, and
Gao
,
H.
,
2008
, “
Lifetime and Strength of Adhesive Molecular Bond Clusters Between Elastic Media
,”
Langmuir
,
24
(
4
), pp.
1262
1270
.
34.
Evans
,
E. A.
, and
Calderwood
,
D. A.
,
2007
, “
Forces and Bond Dynamics in Cell Adhesion
,”
Science
,
316
(
5828
), pp.
1148
1153
.
35.
Kong
,
F.
,
García
,
A. J.
,
Mould
,
A. P.
,
Humphries
,
M. J.
, and
Zhu
,
C.
,
2009
, “
Demonstration of Catch Bonds Between an Integrin and Its Ligand
,”
J. Cell. Biol.
,
185
(
7
), pp.
1275
1284
.
36.
Chang
,
K.-C.
, and
Hammer
,
D. A.
,
2000
, “
Adhesive Dynamics Simulations of Sialyl-Lewisx/e-Selectin-Mediated Rolling in a Cell-Free System
,”
Biophys. J.
,
79
(
4
), pp.
1891
1902
.
37.
Sun
,
L.
,
Cheng
,
Q.
,
Gao
,
H.
, and
Zhang
,
Y.
,
2012
, “
Effect of Loading Conditions on the Dissociation Behaviour of Catch Bond Clusters
,”
J. Royal Soc. Interface
,
9
(
70
), pp.
928
937
.
38.
Smith
,
M. J.
,
Berg
,
E. L.
, and
Lawrence
,
M. B.
,
1999
, “
A Direct Comparison of Selectin-Mediated Transient, Adhesive Events Using High Temporal Resolution
,”
Biophys. J.
,
77
(
6
), pp.
3371
3383
.
39.
Efremov
,
A.
, and
Cao
,
J.
,
2011
, “
Bistability of Cell Adhesion in Shear Flow
,”
Biophys. J.
,
101
(
5
), pp.
1032
1040
.
40.
Shimaoka
,
M.
,
Lu
,
C.
,
Palframan
,
R. T.
,
von Andrian
,
U. H.
,
McCormack
,
A.
,
Takagi
,
J.
, and
Springer
,
T. A.
,
2001
, “
Reversibly Locking a Protein Fold in An Active Conformation With a Disulfide Bond: Integrin αl I Domains With High Affinity and Antagonist Activity in Vivo
,”
Proc. Natl. Acad. Sci. USA
,
98
(
11
), pp.
6009
6014
.
41.
Finger
,
E. B.
,
Purl
,
K. D.
,
Alon
,
R.
,
Lawrence
,
M. B.
,
von Andrian
,
U. H.
, and
Springer
,
T. A.
,
1996
, “
Adhesion Through L-Selectin Requires a Threshold Hydrodynamic Shear
,”
Nature
,
379
(
6562
), pp.
266
269
.
42.
Toledo
,
E.
,
Le Saux
,
G.
,
Li
,
L.
,
Rosengenrg
,
M.
,
Keidar
,
Y.
,
Bhingradive
,
V.
, and
Edri
,
A.
, et al.
2020
, “
Molecular Scale Spatio-Chemical Control of the Activating-Inhibitory Signal Integration in NK Cells
,” BioRxiv.
43.
Li
,
L.
,
Kamal
,
M. A.
,
Stumpf
,
H.
,
Thibaudau
,
F.
,
Sengupta
,
K.
, and
Smith
,
A.-S.
,
2020
, “
Coexistence of Long and Short DNA Constructs Within Adhesion Plaques
.” BioRxiv.
44.
Li
,
L.
,
Stumpf
,
B. H.
, and
Smith
,
A.-S.
,
2021
, “
Molecular Biomechanics Controls Protein Mixing and Segregation in Adherent Membranes
,”
Int. J. Mol. Sci.
,
22
(
7
), p.
3699
.
45.
Weikl
,
T. R.
, and
Lipowsky
,
R.
,
2004
, “
Pattern Formation During T-Cell Adhesion
,”
Biophys. J.
,
87
(
6
), pp.
3665
3678
.
46.
Bell
,
G. I.
,
1978
, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
.
47.
Erdmann
,
T.
, and
Schwarz
,
U. S.
,
2007
, “
Impact of Receptor-Ligand Distance on Adhesion Cluster Stability
,”
Eur. Phys. J. E
,
22
(
2
), pp.
123
137
.
48.
Lou
,
J.
,
Yago
,
T.
,
Klopocki
,
A. G.
,
Mehta
,
P.
,
Chen
,
W.
,
Zarnitsyna
,
V. I.
,
Bovin
,
N. V.
,
Zhu
,
C.
, and
McEver
,
R. P.
,
2006
, “
Flow-Enhanced Adhesion Regulated by a Selectin Interdomain Hinge
,”
J. Cell. Biol.
,
174
(
7
), pp.
1107
1117
.
49.
Sarangapani
,
K. K.
,
Yago
,
T.
,
Klopocki
,
A. G.
,
Lawrence
,
M. B.
,
Fieger
,
C. B.
,
Rosen
,
S. D.
,
McEver
,
R. P.
, and
Zhu
,
C.
,
2004
, “
Low Force Decelerates L-selectin Dissociation From P-Delectin Glycoprotein Ligand-1 and Endoglycan
,”
J. Biol. Chem.
,
279
(
3
), pp.
2291
2298
.
50.
Yago
,
T.
,
Wu
,
J.
,
Wey
,
C. D.
,
Klopocki
,
A. G.
,
Zhu
,
C.
, and
McEver
,
R. P.
,
2004
, “
Catch Bonds Govern Adhesion Through L-Selectin at Threshold Shear
,”
J. Cell. Biol.
,
166
(
6
), pp.
913
923
.
51.
Evans
,
E.
,
Leung
,
A.
,
Heinrich
,
V.
, and
Zhu
,
C.
,
2004
, “
Mechanical Switching and Coupling Between Two Dissociation Pathways in a P-Selectin Adhesion Bond
,”
Proc. Natl. Acad. Sci. USA
,
101
(
31
), pp.
11281
11286
.
52.
Beste
,
M. T.
, and
Hammer
,
D. A.
,
2008
, “
Selectin Catch–Slip Kinetics Encode Shear Threshold Adhesive Behavior of Rolling Leukocytes
,”
Proc. Natl. Acad. Sci. USA
,
105
(
52
), pp.
20716
20721
.
53.
Pereverzev
,
Y. V.
,
Prezhdo
,
O. V.
,
Forero
,
M.
,
Sokurenko
,
E. V.
, and
Thomas
,
W. E.
,
2005
, “
The Two-pathway Model for the Catch-Slip Transition in Biological Adhesion
,”
Biophys. J.
,
89
(
3
), pp.
1446
1454
.
54.
Gillespie
,
D. T.
,
1976
, “
A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions
,”
J. Comput. Phys.
,
22
(
4
), pp.
403
434
.
55.
Gillespie
,
D. T.
,
1977
, “
Exact Stochastic Simulation of Coupled Chemical Reactions
,”
J. Phys. Chem.
,
81
(
25
), pp.
2340
2361
.
56.
Chang
,
K.-C.
,
Tees
,
D. F.
, and
Hammer
,
D. A.
,
2000
, “
The State Diagram for Cell Adhesion Under Flow: Leukocyte Rolling and Firm Adhesion
,”
Proc. Natl. Acad. Sci. USA
,
97
(
21
), pp.
11262
11267
.
You do not currently have access to this content.