Abstract

This work evaluates and revisits elements from the depth-sensing indentation literature by means of carefully chosen practical indentation cases, simulated numerically and compared to experiments. The aim is not to provide a comprehensive study, but to close a series of debated subjects, which constitute major sources of inaccuracies in the evaluation of depth-sensing indentation data in practice, with the help of illustrative examples. First, own examples and references from the literature are presented in order to demonstrate how crucial self-similarity detection and blunting distance compensation are, for establishing a rigorous link between experiments and simple sharp indenter models. Moreover, it is demonstrated, once again, in terms of clear and practical examples, that no more than two parameters are necessary to achieve an excellent match between a sharp indenter finite element simulation and experimental force–displacement data. The clear conclusion is that reverse analysis methods promising to deliver a set of three unique material parameters from depth-sensing indentation cannot be reliable. Lastly, in light of the broad availability of modern finite element software, we also suggest to avoid the rigid indenter approximation, as it is shown to lead to unnecessary inaccuracies. All conclusions from the critical literature review performed lead to a new semi-analytical reverse analysis method, based on available dimensionless functions from the literature and a calibration against case specific finite element simulations. Implementations of the finite element model employed are released as supplementary material, for two major finite element software packages.

References

1.
Pethica
,
J. B.
,
Hutchings
,
R.
, and
Oliver
,
W. C.
,
1983
, “
Hardness Measurement at Penetration Depths as Small as 20 nm
,”
Philos. Mag. A: Phys. Condens. Matter Defects Mech. Prop.
,
48
(
4
), pp.
593
606
.
2.
Oliver
,
W.
, and
Pharr
,
G.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
3.
Oliver
,
W.
, and
Pharr
,
G.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.
4.
Dao
,
M.
,
Chollacoop
,
N.
,
Van Vliet
,
K. J.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
,
2001
, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
,
49
(
19
), pp.
3899
3918
.
5.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
1998
, “
Scaling Approach to Conical Indentation in Elastic-Plastic Solids With Work Hardening
,”
J. Appl. Phys.
,
84
(
3
), pp.
1284
1291
.
6.
Bucaille
,
J. L.
,
Stauss
,
S.
,
Felder
,
E.
, and
Michler
,
J.
,
2003
, “
Determination of Plastic Properties of Metals by Instrumented Indentation Using Different Sharp Indenters
,”
Acta Mater.
,
51
(
6
), pp.
1663
1678
.
7.
Chollacoop
,
N.
,
Dao
,
M.
, and
Suresh
,
S.
,
2003
, “
Depth-Sensing Instrumented Indentation With Dual Sharp Indenters
,”
Acta Mater.
,
51
(
13
), pp.
3713
3729
.
8.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
2004
, “
Scaling, Dimensional Analysis, and Indentation Measurements
,”
Mater. Sci. Eng. R: Rep.
,
44
(
4–5
), pp.
91
149
.
9.
Ogasawara
,
N.
,
Chiba
,
N.
, and
Chen
,
X.
,
2006
, “
Measuring the Plastic Properties of Bulk Materials by Single Indentation Test
,”
Scr. Mater.
,
54
(
1
), pp.
65
70
.
10.
Luo
,
J.
, and
Lin
,
J.
,
2007
, “
A Study on the Determination of Plastic Properties of Metals by Instrumented Indentation Using Two Sharp Indenters
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
5803
5817
.
11.
Yan
,
J.
,
Karlsson
,
A. M.
, and
Chen
,
X.
,
2007
, “
Determining Plastic Properties of a Material With Residual Stress by Using Conical Indentation
,”
Int. J. Solids Struct.
,
44
(
11–12
), pp.
3720
3737
.
12.
Ma
,
Z. S.
,
Zhou
,
Y. C.
,
Long
,
S. G.
, and
Lu
,
C. S.
,
2012
, “
An Inverse Approach for Extracting Elastic-Plastic Properties of Thin Films From Small Scale Sharp Indentation
,”
J. Mater. Sci. Technol.
,
28
(
7
), pp.
626
635
.
13.
Pham
,
T.-H.
,
Kim
,
J. J.
, and
Kim
,
S.-E.
,
2015
, “
Estimating Constitutive Equation of Structural Steel Using Indentation
,”
Int. J. Mech. Sci.
,
90
, pp.
151
161
.
14.
Zhao
,
N.
,
Zhao
,
Y.
,
Li
,
J.
,
Liu
,
H.
,
Shao
,
T.
,
Xu
,
Y.
,
Wang
,
X.
,
Lu
,
Z.
,
Chen
,
J.
,
Liu
,
X.
, and
Niu
,
S.
,
2020
, “
Hardness and Yield Strength of Micro-Nano TaC-Fe Composite Layer Characterized Through Nano-Indentation, Finite Element Simulation and Dimensional Analysis
,”
Ceram. Int.
,
46
(
3
), pp.
3479
3489
.
15.
Gerberich
,
W. W.
,
Nelson
,
J. C.
,
Lilleodden
,
E. T.
,
Anderson
,
P.
, and
Wyrobek
,
J. T.
,
1996
, “
Indentation Induced Dislocation Nucleation: The Initial Yield Point
,”
Acta Mater.
,
44
(
9
), pp.
3585
3598
.
16.
Fleck
,
N.
, and
Hutchinson
,
J.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
17.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.
18.
Murakami
,
Y.
,
Tanaka
,
K.
,
Itokazu
,
M.
, and
Shimamoto
,
A.
,
1994
, “
Elastic Analysis of Triangular Pyramidal Indentation by the Finite-Element Method and Its Application to Nano-Indentation Measurement of Glasses
,”
Philos. Mag. A: Phys. Condens. Matter Struct. Defects Mech. Prop.
,
69
(
6
), pp.
1131
1153
.
19.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
1998
, “
Further Analysis of Indentation Loading Curves: Effects of Tip Rounding on Mechanical Property Measurements
,”
J. Mater. Res.
,
13
(
4
), pp.
1059
1064
.
20.
Troyon
,
M.
, and
Martin
,
M.
,
2003
, “
A Critical Examination of the P-h2 Relationship in Nanoindentation
,”
Appl. Phys. Lett.
,
83
(
5
), pp.
863
865
.
21.
Troyon
,
M.
, and
Huang
,
L.
,
2005
, “
Correction Factor for Contact Area in Nanoindentation Measurements
,”
J. Mater. Res.
,
20
(
3
), pp.
610
617
.
22.
Choi
,
I.
,
Kraft
,
O.
, and
Schwaiger
,
R.
,
2009
, “
Validity of the Reduced Modulus Concept to Describe Indentation Loading Response for Elastoplastic Materials With Sharp Indenters
,”
J. Mater. Res.
,
24
(
3
), pp.
998
1006
.
23.
Troyon
,
M.
,
Abbes
,
F.
, and
Garcia Guzman
,
J. A.
,
2012
, “
Is the Exponent 3/2 Justified in Analysis of Loading Curve of Pyramidal Nanoindentations?
Scanning
,
34
(
6
), pp.
410
417
.
24.
Krier
,
J.
,
Breuils
,
J.
,
Jacomine
,
L.
, and
Pelletier
,
H.
,
2012
, “
Introduction of the Real Tip Defect of Berkovich Indenter to Reproduce With FEM Nanoindentation Test at Shallow Penetration Depth
,”
J. Mater. Res.
,
27
(
1
), pp.
28
38
.
25.
Keryvin
,
V.
,
Charleux
,
L.
,
Bernard
,
C.
, and
Nivard
,
M.
,
2017
, “
The Influence of Indenter Tip Imperfection and Deformability on Analysing Instrumented Indentation Tests at Shallow Depths of Penetration on Stiff and Hard Materials
,”
Exp. Mech.
,
57
(
7
), pp.
1107
1113
.
26.
Hainsworth
,
S. V.
,
Chandler
,
H. W.
, and
Page
,
T. F.
,
1996
, “
Analysis of Nanoindentation Load-Displacement Loading Curves
,”
J. Mater. Res.
,
11
(
8
), pp.
1987
1995
.
27.
Fischer-Cripps
,
A. C.
,
2003
, “
Use of Combined Elastic Modulus in Depth-Sensing Indentation With a Conical Indenter
,”
J. Mater. Res.
,
18
(
5
), pp.
1043
1045
.
28.
Rodríguez
,
S. A.
,
Alcalá
,
J.
, and
Souza
,
R. M.
,
2012
, “
The Reduced Modulus in the Analysis of Sharp Instrumented Indentation Tests
,”
J. Mater. Res.
,
27
(
16
), pp.
2148
2160
.
29.
Chen
,
X.
,
Ogasawara
,
N.
,
Zhao
,
M.
, and
Chiba
,
N.
,
2007
, “
On the Uniqueness of Measuring Elastoplastic Properties From Indentation: The Indistinguishable Mystical Materials
,”
J. Mech. Phys. Solids
,
55
(
8
), pp.
1618
1660
.
30.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
1999
, “
Can Stress–Strain Relationships Be Obtained From Indentation Curves Using Conical and Pyramidal Indenters?
J. Mater. Res.
,
14
(
9
), pp.
3493
3496
.
31.
Phadikar
,
J. K.
,
Bogetti
,
T. A.
, and
Karlsson
,
A. M.
,
2013
, “
On the Uniqueness and Sensitivity of Indentation Testing of Isotropic Materials
,”
Int. J. Solids Struct.
,
50
(
20–21
), pp.
3242
3253
.
32.
Kang
,
J. J.
,
Becker
,
A. A.
, and
Sun
,
W.
,
2012
, “
Determining Elastic-Plastic Properties From Indentation Data Obtained From Finite Element Simulations and Experimental Results
,”
Int. J. Mech. Sci.
,
62
(
1
), pp.
34
46
.
33.
Yuan
,
F.
,
Jiang
,
P.
,
Xie
,
J.
, and
Wu
,
X.
,
2012
, “
Analysis of Spherical Indentation of Materials With Plastically Graded Surface Layer
,”
Int. J. Solids Struct.
,
49
(
3
), pp.
527
536
.
34.
Bolzon
,
G.
,
Maier
,
G.
, and
Panico
,
M.
,
2004
, “
Material Model Calibration by Indentation, Imprint Mapping and Inverse Analysis
,”
Int. J. Solids Struct.
,
41
(
11
), pp.
2957
2975
.
35.
Iracheta
,
O.
,
Bennett
,
C. J.
, and
Sun
,
W.
,
2019
, “
A Holistic Inverse Approach Based on a Multi-Objective Function Optimisation Model to Recover Elastic-Plastic Properties of Materials From the Depth-Sensing Indentation Test
,”
J. Mech. Phys. Solids
,
128
, pp.
1
20
.
36.
Loubet
,
J. L.
,
Georges
,
J. M.
, and
Meille
,
G.
,
1985
, “Vickers Indentation Curves of Elastoplastic Materials,”
Microindentation Tech. Mater. Sci. Eng.
,
P. J.
Blau
, and
B. R.
Lawn
, eds.,
ASTM International
,
West Conshohocken, PA
, pp.
72
89
.
37.
Gao
,
C.
, and
Liu
,
M.
,
2017
, “
Instrumented Indentation of Fused Silica by Berkovich Indenter
,”
J. Non-Cryst. Solids
,
475
, pp.
151
160
.
38.
Bruns
,
S.
,
Uesbeck
,
T.
,
Fuhrmann
,
S.
,
Tarragó Aymerich
,
M.
,
Wondraczek
,
L.
,
de Ligny
,
D.
, and
Durst
,
K.
,
2020
, “
Indentation Densification of Fused Silica Assessed by Raman Spectroscopy and Constitutive Finite Element Analysis
,”
J. Am. Ceram. Soc.
,
103
(
5
), pp.
3076
3088
.
39.
Cao
,
Y. P.
,
Dao
,
M.
, and
Lu
,
J.
,
2007
, “
A Precise Correcting Method for the Study of the Superhard Material Using Nanoindentation Tests
,”
J. Mater. Res.
,
22
(
5
), pp.
1255
1264
.
40.
Chaudhri
,
M. M.
,
2001
, “
A Note on a Common Mistake in the Analysis of Nanoindentation Data
,”
J. Mater. Res.
,
16
(
2
), pp.
336
339
.
41.
Lim
,
Y. Y.
, and
Chaudhri
,
M. M.
,
2003
, “
Experimental Investigations of the Normal Loading of Elastic Spherical and Conical Indenters on to Elastic Flats
,”
Philos. Mag.
,
83
(
30
), pp.
3427
3462
.
42.
Simmons
,
G.
, and
Wang
,
H.
,
1971
,
Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook
,
MIT Press
,
Cambridge, MA
.
43.
Gan
,
Z.
,
Zhang
,
Y.
,
Yu
,
G.
,
Tan
,
C. M.
,
Lau
,
S. P.
, and
Tay
,
B. K.
,
2004
, “
Intrinsic Mechanical Properties of Diamond-Like Carbon Thin Films Deposited by Filtered Cathodic Vacuum Arc
,”
J. Appl. Phys.
,
95
(
7
), pp.
3509
3515
.
44.
Xu
,
Z. H.
, and
Li
,
X.
,
2007
, “
Effect of Sample Tilt on Nanoindentation Behaviour of Materials
,”
Philos. Mag.
,
87
(
16
), pp.
2299
2312
.
45.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
Oxford
.
46.
Papazafeiropoulos
,
G.
,
Muñiz-Calvente
,
M.
, and
Martínez Pañeda
,
E.
,
2017
, “
Abaqus2matlab: A Suitable Tool for Finite Element Post-Processing
,”
Adv. Eng. Soft.
,
105
, pp.
9
16
.
47.
Wang
,
M.
,
Wu
,
J.
,
Hui
,
Y.
,
Zhang
,
Z.
,
Zhan
,
X.
, and
Guo
,
R.
,
2017
, “
Identification of Elastic-plastic Properties of Metal Materials by Using the Residual Imprint of Spherical Indentation
,”
Mater. Sci. Eng. A
,
679
, pp.
143
154
.
48.
Zhang
,
Y.
,
Hart
,
J. D.
, and
Needleman
,
A.
,
2019
, “
Identification of Plastic Properties From Conical Indentation Using a Bayesian-Type Statistical Approach
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011002
.
49.
Pharr
,
G. M.
, and
Bolshakov
,
A.
,
2002
, “
Understanding Nanoindentation Unloading Curves
,”
J. Mater. Res.
,
17
(
10
), pp.
2660
2671
.
50.
Andriollo
,
T.
,
Thorborg
,
J.
, and
Hattel
,
J. H.
,
2017
, “
Analysis of the Equivalent Indenter Concept Used to Extract Young’s Modulus From a Nano-Indentation Test: Some New Insights Into the Oliver–Pharr Method
,”
Modell. Simul. Mater. Sci. Eng.
,
25
(
4
), p.
045004
.
51.
Sneddon
,
I. N.
,
1965
, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
,
3
(
1
), pp.
47
57
.
52.
Cheng
,
Y. T.
,
Li
,
Z.
, and
Cheng
,
C. M.
,
2002
, “
Scaling Relationships for Indentation Measurements
,”
Philos. Mag. A: Phys. Condens. Matter Struct. Defects Mech. Prop.
,
82
(
10
), pp.
1821
1829
.
You do not currently have access to this content.