Abstract

The ignition threshold of an energetic material (EM) quantifies the macroscopic conditions for the onset of self-sustaining chemical reactions. The threshold is an important theoretical and practical measure of material attributes that relate to safety and reliability. Historically, the thresholds are measured experimentally. Here, we present a new Lagrangian computational framework for establishing the probabilistic ignition thresholds of heterogeneous EM out of the evolutions of coupled mechanical-thermal-chemical processes using mesoscale simulations. The simulations explicitly account for microstructural heterogeneities, constituent properties, and interfacial processes and capture processes responsible for the development of material damage and the formation of hotspots in which chemical reactions initiate. The specific mechanisms tracked include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, heat conduction, reactive chemical heating, gaseous product generation, and convective heat transfer. To determine the ignition threshold, the minimum macroscopic loading required to achieve self-sustaining chemical reactions with a rate of reactive heat generation exceeding the rate of heat loss due to conduction and other dissipative mechanisms is determined. Probabilistic quantification of the processes and the thresholds are obtained via the use of statistically equivalent microstructure sample sets (SEMSS). The predictions are in agreement with available experimental data.

References

1.
Weingart
,
R. C.
,
Jackson
,
R. K.
,
Honodel
,
C. A.
, and
Lee
,
R. S.
,
1980
, “
Shock Initiation of Pbx-9404 by Electrically Driven Flyer Plates
,”
Propellants Explos.
,
5
(
6
), pp.
158
162
.
2.
Walker
,
F. E.
, and
Wasley
,
R. J.
,
1969
, “
Critical Energy for Shock Initiation of Heterogeneous Explosives
,”
Explosivstoffe
,
17
(
1
), pp.
9
13
.
3.
James
,
H. R.
,
1996
, “
An Extension to the Critical Energy Criterion Used to Predict Shock Initiation Thresholds
,”
Propellants, Explos., Pyrotech.
,
21
(
1
), pp.
8
13
.
4.
James
,
H.
, “
Links Between Macroscopic Behaviour and Explosive Morphology in Shock to Detonation Transitions
,”
Proceedings of the 13th International Detonation Symposium
,
Norfolk, VA
,
July 23
, pp.
952
961
.
5.
Gittings
,
E. F.
,
1965
, “
Initiation of a Solid Explosive by a Short-Duration Shock
,”
Proceedings of the Fourth Symposium (International) on Detonation
,
White Oak, MD
,
Oct. 12
, pp.
373
380
.
6.
Trott
,
B. D.
, and
Jung
,
R. G.
,
1970
, “
Effect of Pulse Duration on the Impact Sensitivity of Solid Explosives
,”
Proceedings of the Fifth Symposium (International) on Detonation
,
Pasadena, CA
,
Aug. 18
, pp.
191
205
.
7.
Welle
,
E. J.
,
Molek
,
C. D.
,
Wixom
,
R. R.
, and
Samuels
,
P.
,
2014
, “
Microstructural Effects on the Ignition Behavior of HMX
,”
J. Phys.: Conf. Ser.
,
500
(
5
), p.
052049
.
8.
Wei
,
Y.
,
Kim
,
S.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2018
, “
Quantification of Probabilistic Ignition Thresholds of Polymer-Bonded Explosives With Microstructure Defects
,”
J. Appl. Phys.
,
124
(
16
), p.
165110
.
9.
Doherty
,
R. M.
, and
Watt
,
D. S.
,
2008
, “
Relationship Between RDX Properties and Sensitivity
,”
Propellants, Explos., Pyrotech.
,
33
(
1
), pp.
4
13
.
10.
Teipel
,
U.
,
2004
,
Energetic Materials: Particle Processing and Characterization
,
Wiley-VCH
,
Weinheim, Germany
.
11.
Barua
,
A.
,
Kim
,
S.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2013
, “
Prediction of Probabilistic Ignition Behavior of Polymer-Bonded Explosives From Microstructural Stochasticity
,”
J. Appl. Phys.
,
113
(
18
), p.
184907
.
12.
Kim
,
S.
,
Wei
,
Y.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2018
, “
Prediction of Shock Initiation Thresholds and Ignition Probability of Polymer-Bonded Explosives Using Mesoscale Simulations
,”
J. Mech. Phys. Solids
,
114
, pp.
97
116
.
13.
Miller
,
C.
,
Kim
,
S.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2019
, “
Ignition Thresholds of Aluminized HMX-Based Polymer-Bonded Explosives
,”
AIP Adv.
,
9
(
4
), p.
045103
.
14.
Tarver
,
C. M.
,
Chidester
,
S. K.
, and
Nichols
,
A. L.
,
1996
, “
Critical Conditions for Impact- and Shock-Induced hot Spots in Solid Explosives
,”
J. Phys. Chem.
,
100
(
14
), pp.
5794
5799
.
15.
Kim
,
S.
,
Miller
,
C.
,
Horie
,
Y.
,
Molek
,
C.
,
Welle
,
E.
, and
Zhou
,
M.
,
2016
, “
Computational Prediction of Probabilistic Ignition Threshold of Pressed Granular Octahydro-1,3,5,7-Tetranitro-1,2,3,5-Tetrazocine (HMX) Under Shock Loading
,”
J. Appl. Phys.
,
120
(
11
), p.
115902
.
16.
Reynaud
,
M.
,
Sorin
,
R.
,
Dubois
,
V.
, and
Desbiens
,
N.
,
2020
, “
WGT: A Mesoscale-Informed Reactive Burn Model
,”
J. Appl. Phys.
,
127
(
6
), p.
065901
.
17.
Hubbard
,
H. W.
, and
Johnson
,
M. H.
,
1959
, “
Initiation of Detonations
,”
J. Appl. Phys.
,
30
(
5
), pp.
765
769
.
18.
Lee
,
E. L.
, and
Tarver
,
C. M.
,
1980
, “
Phenomenological Model of Shock Initiation in Heterogeneous Explosives
,”
Phys. Fluids
,
23
(
12
), pp.
2362
2372
.
19.
Handley
,
C. A.
,
Lambourn
,
B. D.
,
Whitworth
,
N. J.
,
James
,
H. R.
, and
Belfield
,
W. J.
,
2018
, “
Understanding the Shock and Detonation Response of High Explosives at the Continuum and Meso Scales
,”
Appl. Phys. Rev.
,
5
(
1
), p.
011303
.
20.
McGuire
,
R.
, and
Tarver
,
C.
,
1981
,
Chemical-decomposition Models for the Thermal Explosion of Confined HMX, TATB, RDX, and TNT Explosives
,
Lawrence Livermore National Lab.
,
CA
.
21.
Tarver
,
C. M.
, and
Tran
,
T. D.
,
2004
, “
Thermal Decomposition Models for HMX-Based Plastic Bonded Explosives
,”
Combust. Flame
,
137
(
1–2
), pp.
50
62
.
22.
Henson
,
B. F.
,
Asay
,
B. W.
,
Smilowitz
,
L. B.
, and
Dickson
,
P. M.
,
2002
, “
Ignition Chemistry in HMX From Thermal Explosion to Detonation
,”
Proceedings of the Shock Compression of Condensed Matter-2001, Pts 1 and 2
,
Atlanta, GA
,
June 24
, Vol.
620
, pp.
1069
1072
.
23.
Menikoff
,
R.
, and
Shaw
,
M. S.
,
2010
, “
Reactive Burn Models and Ignition & Growth Concept
,”
EPJ Web Conf.
,
10
, p.
00003
.
24.
Starkenberg
,
J.
, and
Dorsey
,
T. M.
,
1998
,
An Assessment of the Performance of the History Variable Reactive bum Explosive Initiation Model in the CTH Code
,
Army Research Lab Aberdeen Proving Ground MD Weapons Technology Directorate
.
25.
Todd
,
S. N.
,
Anderson
,
M. U.
,
Caipen
,
T. L.
, and
Grady
,
D. E.
,
2009
, “
Non-Shock Initiation Model for Explosive Families: Numerical Results
,”
Proceedings of the Shock Compression of Condensed Matter—2009, Pts 1 and 2
,
Nashville, TN
,
June 28
, Vol. 1195, p.
361
.
26.
Partom
,
Y.
,
1998
, “
Predicting PBX-9404 Initiation and Detonation Data with a Calibrated Reaction Model
,”
Proceedings of the Eleventh International Detonation Symposium
,
Snowmass Village, CO
,
Aug. 31
, pp.
33300
33305
.
27.
Partom
,
Y.
,
2001
, “
Hydro-reactive Computations with a Temperature Dependent Reaction Rate
,”
Proceedings of the Shock Compression of Condensed Matter-2001, Pts 1 and 2
,
Atlanta, GA
,
June 24
, Vol.
620
, pp.
460
463
.
28.
Wei
,
Y.
,
Olsen
,
D. H.
,
Miller
,
C. M.
,
Wagner
,
K. B.
,
Keyhani
,
A.
,
Thadhani
,
N.
, and
Zhou
,
M.
,
2020
, “
Computational Design of Three-Dimensional Multi-Constituent Material Microstructure Sets with Prescribed Statistical Constituent and Geometric Attributes
,”
Multiscale Sci. Eng.
,
2
(
1
), pp.
1
13
.
29.
Mulford
,
R. N.
, and
Swift
,
D. C.
,
2001
, “
Mesoscale Modelling of Shock Initiation in HMX-Based Explosives
,”
Proceedings of the Shock Compression of Condensed Matter-2001, Pts 1 and 2
,
Atlanta, GA
,
June 24–29
, Vol.
620
, pp.
415
418
.
30.
Christiansen
,
D. E.
, and
Taylor
,
J. W.
,
1973
, “
HE Sensitivity Study
,”
Los Alamos Scientific Lab, Los Alamos, NM, Report No. LA-5440-MS
.
31.
Hayes
,
D. B.
,
1976
, “
A Pnt Detonation Criterion From Thermal Explosion Theory
,”
Proceedings of the 6th International Detonation Symposium
,
Coronado, CA
,
Aug. 24
, pp.
95
100
.
32.
Bennett
,
J. G.
,
Haberman
,
K. S.
,
Johnson
,
J. N.
, and
Asay
,
B. W.
,
1998
, “
A Constitutive Model for the non-Shock Ignition and Mechanical Response of High Explosives
,”
J. Mech. Phys. Solids
,
46
(
12
), pp.
2303
2322
.
33.
Austin
,
R. A.
,
Barton
,
N. R.
,
Reaugh
,
J. E.
, and
Fried
,
L. E.
,
2015
, “
Direct Numerical Simulation of Shear Localization and Decomposition Reactions in Shock-Loaded HMX Crystal
,”
J. Appl. Phys.
,
117
(
18
), p.
185902
.
34.
Benson
,
D. J.
, and
Conley
,
P.
,
1999
, “
Eulerian Finite-Element Simulations of Experimentally Acquired HMX Microstructures
,”
Modell. Simul. Mater. Sci. Eng.
,
7
(
3
), pp.
333
354
.
35.
Mas
,
E. M.
,
Clements
,
B. E.
,
Ionita
,
A.
, and
Peterson
,
P.
,
2006
, “
Finite Element Method Calculations on Statistically Consistent Microstructures of PBX 9501
,”
AIP Conf. Proc.
,
845
(
1
), pp.
487
490
.
36.
Barua
,
A.
, and
Zhou
,
M.
,
2011
, “
A Lagrangian Framework for Analyzing Microstructural Level Response of Polymer-Bonded Explosives
,”
Modell. Simul. Mater. Sci. Eng.
,
19
(
5
), p.
055001
.
37.
Dattelbaum
,
D. M.
, and
Stevens
,
L. L.
,
2008
, “Equations of State of Binders and Related Polymers,”
Static Compression of Energetic Materials
,
S. M.
Peiris
, and
G. J.
Piermarini
, ed.,
Springer
,
Virginia
, pp.
127
202
.
38.
Liu
,
C.
,
2003
, “
Specific Surface: A Missing Parameter in High-Explosive Modeling
,”
Los Alamos National Laboratory (LANL), Los Alamos, NM, USA, Report No. LA-UR-14-20512
.
39.
Kim
,
S.
,
Barua
,
A.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2014
, “
Ignition Probability of Polymer-Bonded Explosives Accounting for Multiple Sources of Material Stochasticity
,”
J. Appl. Phys.
,
115
(
17
), p.
174902
.
40.
Welle
,
E. J.
,
Molek
,
C. D.
,
Wixom
,
R. R.
,
Samuels
,
P.
, and
Langhals
,
J.
, “
Microstructure Effects on the Initiation Threshold Behavior of HMX and PBXN-5
,”
Proceedings of the 15th International Detonation Symposium
,
San Francisco, CA
,
July 13
.
41.
Springer
,
H. K.
,
Tarver
,
C. M.
,
Reaugh
,
J. E.
, and
May
,
C. M.
,
2014
, “
Investigating Short-Pulse Shock Initiation in HMX-Based Explosives with Reactive Meso-Scale Simulations
,”
J. Phys.: Conf. Ser.
,
500
(
5
), p.
052041
.
42.
Barua
,
A.
,
Kim
,
S.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2013
, “
Ignition Criterion for Heterogeneous Energetic Materials Based on Hotspot Size-Temperature Threshold
,”
J. Appl. Phys.
,
113
(
6
), p.
064906
.
43.
Zhou
,
M.
,
Needleman
,
A.
, and
Clifton
,
R. J.
,
1994
, “
Finite-element Simulations of Shear Localization in Plate Impact
,”
J. Mech. Phys. Solids
,
42
(
3
), pp.
423
458
.
44.
Dick
,
J. J.
,
Hooks
,
D. E.
,
Menikoff
,
R.
, and
Martinez
,
A. R.
,
2004
, “
Elastic-plastic Wave Profiles in Cyclotetramethylene Tetranitramine Crystals
,”
J. Appl. Phys.
,
96
(
1
), pp.
374
379
.
45.
Hardin
,
D. B.
,
2015
, “
The Role of Viscoplasticity in the Deformation and Ignition Response of Polymer Bonded Explosives
,”
Doctor of Philosophy, Georgia Institute of Technology
.
46.
Mas
,
E. M.
, and
Clements
,
B. E.
,
1996
, “
A Viscoelastic Model for PBX Binders
,” http://lib-www.lanl.gov/la-pubs/00818442.pdf,
Report No. LA-UR-01-3492
.
47.
Wu
,
Y.-Q.
, and
Huang
,
F.-L.
,
2009
, “
A Micromechanical Model for Predicting Combined Damage of Particles and Interface Debonding in PBX Explosives
,”
Mech. Mater.
,
41
(
1
), pp.
27
47
.
48.
Mas
,
E. M.
,
Clements
,
B. E.
,
Blumenthal
,
B.
,
Cady
,
C. M.
,
Gray
,
G. T.
, and
Liu
,
C.
,
2002
, “
A Viscoelastic Model for PBX Binders
,”
AIP Conf. Proc.
,
620
(
1
), pp.
661
664
.
49.
Gust
,
W. H.
,
1982
, “
High-Impact Deformation of Metal Cylinders at Elevated-Temperatures
,”
J. Appl. Phys.
,
53
(
5
), pp.
3566
3575
.
50.
Menikoff
,
R.
, and
Sewell
,
T. D.
,
2001
, “
Constituent Properties of HMX Needed for Meso-Scale Simulations
,”
Los Alamos National Lab., Report No. LA-UR-00-3804-rev
.
51.
Gibbs
,
T. R.
, and
Popolato
,
A.
,
1980
,
LASL Explosive Property Data
,
University of California
,
Berkeley
.
52.
Wilkins
,
M. L.
,
1999
,
Computer Simulation of Dynamic Phenomena
,
Springer
,
Berlin, NY
.
53.
Wilkins
,
M. L.
,
Squier
,
B.
, and
Halperin
,
B.
,
1964
, “
Equation of State for Detonation Products of PBX 9404 and LX04-01
,”
Proceedings of the Symposium (International) on Combustion
,
Cambridge, UK
,
Aug. 17
,
Elsevier
, pp.
769
778
.
54.
Urtiew
,
P. A.
, and
Hayes
,
B.
,
1991
, “
Parametric Study of the Dynamic Jwl-Eos for Detonation Products
,”
Combust., Explos. Shock Waves
,
27
(
4
), pp.
505
514
.
55.
Jones
,
H.
, and
Miller
,
A. R.
,
1948
, “
The Detonation of Solid Explosives—the Equilibrium Conditions in the Detonation Wave-Front and the Adiabatic Expansion of the Products of Detonation
,”
Proc. R. Soc. London, Ser. A
,
194
(
1039
), pp.
480
507
.
56.
Kury
,
J.
,
Hornig
,
H.
,
Lee
,
E.
,
McDonnel
,
J.
,
Ornellas
,
D.
,
Finger
,
M.
,
Strange
,
F.
, and
Wilkins
,
M.
,
1965
, “
Metal Acceleration by Chemical Explosives
,”
Proceedings of the Fourth Symposium (International) on Detonation
,
White Oak, MD
,
Oct. 12
, pp.
3
13
.
57.
Lee
,
E.
,
Hornig
,
H.
, and
Kury
,
J.
,
1968
,
Adiabatic Expansion of High Explosive Detonation Products
,
University of California Radiation Laboratory at Livermore
,
Livermore, CA
.
58.
Lee
,
E.
,
Finger
,
M.
, and
Collins
,
W.
,
1973
,
JWL Equation of State Coefficients for High Explosives
,
Lawrence Livermore National Lab. (LLNL)
,
Livermore, CA
.
59.
Skinner
,
D.
,
Olson
,
D.
, and
Block-Bolten
,
A.
,
1998
, “
Electrostatic Discharge Ignition of Energetic Materials
,”
Propellants, Explos., Pyrotech.
,
23
(
1
), pp.
34
42
.
60.
Brill
,
T. B.
,
Gongwer
,
P. E.
, and
Williams
,
G. K.
,
1994
, “
Thermal-Decomposition of Energetic Materials. 66. Kinetic Compensation Effects in Hmx, Rdx, and Nto
,”
J. Phys. Chem.
,
98
(
47
), pp.
12242
12247
.
61.
Suryanarayana
,
B.
, and
Graybush
,
R.
,
2010
, “
Thermal Decomposition of 1, 3, 5, 7-Tetranitro-l, 3, 5, 7-Tetrazacyclooctane (HMX): A Mass Spectrometric Study of the Products From 3-HMX
,”
Proceedings of 39th Congress on Industrial Chemistry, Gr. XS
,
Adelaide, Australia
,
July 25
, pp.
24
591
.
62.
Kimura
,
J.
, and
Kubota
,
N.
,
1980
, “
Thermal-Decomposition Process of Hmx
,”
Propellants Explos.
,
5
(
1
), pp.
1
8
.
63.
Kraeutle
,
K.
,
1981
,
18th JANNAF Combustion Meeting
,
Pasadena, CA
, pp.
19
23
.
64.
Medvedev
,
A. I.
,
Sakovich
,
G. V.
, and
Kostantinov
,
V. V.
,
1977
,
Meeting on Kinetics and Mechanism of Chemical Reactions in Solids (Abstracts of Reports)
,
Novosibirsk: Institute of Physical Chemistry of Foundation of Processing of Mineral, Siberian Branch of Academy of Sciences of the USSR
.
65.
Klimenko
,
G. K.
,
1975
, “
Combustion and Explosion
,”
Proceedings of the Fourth All-Union Symposium on Combustion and Explosion [in Russian]
,
Nauka, Moscow
.
66.
Belyayeva
,
M. S.
,
Klimenko
,
G. K.
,
Babaytseva
,
L. T.
, and
Stolyarov
,
P. N.
,
1977
,”
Fifth All Union Symposium on Combustion and Detonation
.
67.
German
,
V.
,
Grebennikova
,
S.
,
Kornilova
,
L. Y.
,
Lobanova
,
S.
, and
Fomicheva
,
L.
,
2002
, “
Thermal Decomposition of PETN and HMX Over a Wide Temperature Range
,”
Proceedings of the 12th Symposium (International) on Detonation, Office of Naval Research
,
San Diego, CA
,
Aug. 11
.
68.
Mader
,
C. L.
,
2008
,
Numerical Modeling of Explosives and Propellants
,
CRC Press
,
Boca Raton
.
69.
Kittell
,
D. E.
,
Schmitt
,
R. G.
,
Tuttle
,
L. W.
, and
Harstad
,
E. N.
,
2018
,
Implementation of a CREST Multistate Reactive Burn Model in CTH for two Solid High Explosives
,
Sandia National Lab. (SNL-NM)
,
Albuquerque, NM, USA
.
70.
Saw
,
C. K.
,
2002
, “
Kinetics of HMX and Phase Transitions: Effects of Grain Size at Elevated Temperature
,”
Proceedings of the 12th International Detonation Symposium
,
San Diego, CA
,
Aug. 11
.
71.
Bourne
,
N. K.
, and
Gray
,
G. T.
,
2005
, “
Dynamic Response of Binders; Teflon, Estane and Kel-F-800
,”
J. Appl. Phys.
,
98
(
12
), p.
123503
.
72.
Shoemaker
,
R. L.
,
Stark
,
J. A.
,
Koshigoe
,
L. G.
, and
Taylor
,
R. E.
,
1985
, “Thermophysical Properties of Propellants,”
Thermal Conductivity 18
,
T.
Ashworth
and
D. R.
Smith
, ed.,
Springer US
,
Boston, MA
, pp.
199
211
.
73.
Gonthier
,
K. A.
,
2003
, “
Modeling and Analysis of Reactive Compaction for Granular Energetic Solids
,”
Combust. Sci. Technol.
,
175
(
9
), pp.
1679
1709
.
74.
Wemhoff
,
A. P.
,
Burnham
,
A. K.
,
Nichols
,
A. L.
, and
Knap
,
J.
,
2007
, “
Calibration Methods for the Extended Prout-Tompkins Chemical Kinetics Model and Derived Cookoff Parameters for RDX, HMX, LX-10 and PBXN-109
,”
Proceedings of the ASME-JSME Thermal Engineering Summer Heat Transfer Conference, American Society of Mechanical Engineers
,
Vancouver, BC, Canada
,
July 8
,
American Society of Mechanical Engineers
, pp.
625
632
.
75.
Hodowany
,
J.
,
Ravichandran
,
G.
,
Rosakis
,
A. J.
, and
Rosakis
,
P.
,
2000
, “
Partition of Plastic Work Into Heat and Stored Energy in Metals
,”
Exp. Mech.
,
40
(
2
), pp.
113
123
.
76.
Zhai
,
J.
,
Tomar
,
V.
, and
Zhou
,
M.
,
2004
, “
Micromechanical Simulation of Dynamic Fracture Using the Cohesive Finite Element Method
,”
ASME J. Eng. Mater. Technol.
,
126
(
2
), pp.
179
191
.
77.
Green
,
L.
,
Weston
,
A.
, and
Van Velkinburg
,
J.
,
1971
,
Mechanical and Frictional Behavior of Skid Test Hemispherical Billets
,
California Univ., Livermore, Lawrence Livermore Lab
.
78.
Chidester
,
S.
,
Green
,
L.
, and
Lee
,
C.
,
1993
,
A Frictional Work Predictive Method for the Initiation of Solid High Explosives From low-Pressure Impacts
,
Lawrence Livermore National Lab.
,
CA
.
79.
Zukas
,
J. A.
,
2004
,
Introduction to Hydrocodes
,
Elsevier
,
Amsterdam; Boston
.
80.
Krien
,
G.
,
Licht
,
H.
, and
Zierath
,
J.
,
1973
, “
Thermochemical Investigation of Nitramines
,”
Thermochim. Acta
,
6
(
5
), pp.
465
472
.
81.
Beckstead
,
M. W.
,
Peterson
,
N. L.
,
Pilcher
,
D. T.
,
Hopkins
,
B. D.
, and
Krier
,
H.
,
1977
, “
Convective Combustion Modeling Applied to Deflagration-to-Detonation Transition of Hmx
,”
Combust. Flame
,
30
(
3
), pp.
231
241
.
82.
Kim
,
B.
,
Choi
,
S.
, and
Yoh
,
J. J.
,
2019
, “
Modeling the Shock-Induced Multiple Reactions in a Random bed of Metallic Granules in an Energetic Material
,”
Combust. Flame
,
210
, pp.
54
70
.
83.
Liu
,
W.-G.
,
2014
,
First-principle Studies of the Initiation Mechanism of Energetic Materials
,
California Institute of Technology
.
84.
Weismiller
,
M. R.
,
Malchi
,
J. Y.
,
Yetter
,
R. A.
, and
Foley
,
T. J.
,
2009
, “
Dependence of Flame Propagation on Pressure and Pressurizing gas for an Al/CuO Nanoscale Thermite
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1895
1903
.
85.
Bastea
,
S.
, “
Transport Properties of Fluid Mixtures at High Pressures and Temperatures. Application to the Detonation Products of HMX
,”
Proceedings of the 12th International Detonation Symposium
,
Wyndham San Diego at Emerald Plaza
.
86.
Parker
,
G. R.
,
Dickson
,
P. M.
,
Asay
,
B. W.
,
Smilowitz
,
L. B.
,
Henson
,
B. F.
, and
Perry
,
W. L.
,
2006
, “
Understanding the Mechanisms Leading to gas Permeation in Thermally Damaged PBX 9501
,”
Shock Compression of Condensed Matter—2005, Pts 1 and 2
,
845
, pp.
1101
1104
.
87.
Asay
,
B.
,
Parker
,
G.
,
Dickson
,
P.
,
Henson
,
B.
, and
Smilowitz
,
L.
,
2004
, “
Dynamic Measurement of the Permeability of an Explosive Undergoing Thermal Damage
,”
Energ. Mater.
,
22
(
1
), pp.
25
39
.
88.
Koshigoe
,
L.
,
Shoemaker
,
R.
, and
Taylor
,
R.
,
1983
,
Specific Heat of Octahydro-1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazocine (HMX)
,
Purdue Univ Lafayette in Thermophysical Properties Research Lab
.
89.
Koshigoe
,
L. G.
,
Shoemaker
,
R. L.
, and
Taylor
,
R. E.
,
1984
, “
Specific-Heat of Hmx
,”
AIAA J.
,
22
(
11
), pp.
1600
1601
.
90.
Mcglaun
,
J. M.
,
Thompson
,
S. L.
, and
Elrick
,
M. G.
,
1990
, “
CTH—a Three-Dimensional Shock-Wave Physics Code
,”
Int. J. Impact Eng.
,
10
(
1–4
), pp.
351
360
.
91.
Chidester
,
S. K.
,
Tarver
,
C. M.
, and
Garza
,
R.
,
1999
, “
Low Amplitude Impact Testing and Analysis of Pristine and Aged Solid High Explosives
,”
Proceedings of the Eleventh (International) Symposium on Detonation
,
Snowbird, UT
,
June 27
.
92.
Idar
,
D. J.
,
Straight
,
J. W.
,
Osborn
,
M. A.
,
Coulter
,
W. L.
, and
Buntain
,
G. A.
,
2000
, “
Low Amplitude Impact of Damaged PBX 9501
,”
Shock Compression of Condensed Matter-1999, Pts 1 and 2
,
505
, pp.
655
658
.
93.
Gustavsen
,
R. L.
,
Dattelbaum
,
D. M.
,
Johnson
,
C. E.
, and
Bartram
,
B. D.
,
2013
, “
Experimental Studies of Rod Impact on Bare/Uncovered PBX 9501 Explosive
,”
Procedia Eng.
,
58
, pp.
147
156
.
94.
Gresshoff
,
M.
, and
Hrousis
,
C. A.
,
2010
, “
Probabilistic Shock Threshold Criterion
,”
Proceedings of the 14th International Detonation Symposium
,
Coeur d'Alene, ID
,
Apr. 11
.
95.
Keyhani
,
A.
,
Kim
,
S.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2019
, “
Energy Dissipation in Polymer-Bonded Explosives with Various Levels of Constituent Plasticity and Internal Friction
,”
Comput. Mater. Sci.
,
159
, pp.
136
149
.
You do not currently have access to this content.