Abstract

In vibration-based high cycle fatigue testing, a base-excited plate is driven at a high frequency resonant mode until failure. In one vibration-based method involving a cantilevered square plate, a mode often referred to as the “two-stripe” mode is sometimes used because it exists at high frequencies and produces large uniaxial bending stresses along the free edge that are suitable for fatigue testing. The purpose of this work is to precisely investigate how the dimensions of a more generally rectangular plate influence performance when driven at the two-stripe mode. Included are the results of many thousands of modal analysis simulations. From these simulations, general trends with respect to resonant frequencies, frequency isolation, and stress fields in the plate are examined. Results of select geometries were then experimentally validated using a 1000 lb shaker. It is generally shown that, compared with square plates, rectangular plates with 1.37 length-to-width ratio exhibit more favorable stress distributions and frequency isolation. Recommendations are also given for how to quickly select preferable plate dimensions when planning a test based around the operating frequencies of the test setup.

References

1.
USAF
,
2002
,
Engine Structural Integrity Program (ENSIP)
,
Naval Publications and Form Center (NPFC)
.
2.
Suresh
,
S.
,
1998
,
Fatigue of Materials
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
3.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
.
4.
Walker
,
K.
,
1970
, “The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum,”
Effects of Environment and Complex Load History on Fatigue Life
,
M.
Rosenfeld
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
1
14
.
5.
Karolczuk
,
A.
, and
Macha
,
E.
,
2005
, “
A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials
,”
Int. J. Fract.
,
134
(
3
), p.
267
304
.
6.
Kamal
,
M.
, and
Rahman
,
M. M.
,
2018
, “
Advances in Fatigue Life Modeling: A Review
,”
Renewable Sustainable Energy Rev.
,
82
(
1
), pp.
940
949
.
7.
George
,
T. J.
,
Seidt
,
J.
,
Herman Shen
,
M.-H.
,
Nicholas
,
T.
, and
Cross
,
C. J.
,
2004
, “
Development of a Novel Vibration-Based Fatigue Testing Methodology
,”
Int. J. Fatigue
,
26
(
5
), pp.
477
486
.
8.
Hou
,
J.
,
Wicks
,
B. J.
, and
Antoniou
,
R. A.
,
2002
, “
An Investigation of Fatigue Failures of Turbine Blades in a Gas Turbine Engine by Mechanical Analysis
,”
Eng. Fail. Anal.
,
9
(
2
), p.
201
211
.
9.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
George
,
T.
,
Cross
,
C. J.
, and
Calcaterra
,
J.
,
2004
, “
Development of an Improved High Cycle Fatigue Criterion
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
162
169
.
10.
Scott-Emuakpor
,
O. E.
,
Shen
,
H.
,
George
,
T.
, and
Cross
,
C.
,
2008
, “
An Energy-Based Uniaxial Fatigue Life Prediction Method for Commonly Used Gas Turbine Engine Materials
,”
ASME J. Eng. Gas Turbines Power
,
130
(
6
), p.
062504
.
11.
Nicholas
,
T.
,
2006
,
High Cycle Fatigue: A Mechanics of Materials Perspective
, 1st ed.,
Elsevier Science
,
Oxford, UK
.
12.
Federal Aviation Administration
,
2008
,
Metallic Materials Properties Development and Standardization (MMPDS-04)
,
Battelle Memorial Institute
.
13.
Zanellati
,
D.
,
Benasciutti
,
D.
, and
Tovo
,
R.
,
2018
, “
Vibration Fatigue Tests by Tri-Axis Shaker: Design of an Innovative System for Uncoupled Bending/Torsion Loading
,”
AIAS2017—46th Conference on Stress Analysis and Mechanical Engineering Design
,
Pisa Italy
,
Sept. 6–9, 2017
, Vol. 8, pp.
92
101
.
14.
Ghielmetti
,
C.
,
Ghelichi
,
R.
,
Guagliano
,
M.
,
Ripamonti
,
F.
, and
Vezzù
,
S.
,
2011
, “
Development of a Fatigue Test Machine for High Frequency Applications
,”
11th International Conference on the Mechanical Behaviour of Materials ICM11
,
Como, Italy
,
June 5–9
.
15.
Khalij
,
L.
,
Gautrelet
,
C.
, and
Guillet
,
A.
,
2015
, “
Fatigue Curves of a Low Carbon Steel Obtained From Vibration Experiments With an Electrodynamic Shaker
,”
Mater. Des.
,
86
(
5
), pp.
640
648
.
16.
Murugan
,
G.
,
Raghukandan
,
K.
,
Pillai
,
U. T. S.
,
Pai
,
B. C.
, and
Mahadevan
,
K.
,
2009
, “
High Cyclic Fatigue Characteristics of Gravity Cast AZ91 Magnesium Alloy Subjected to Transverse Load
,”
Mater. Des.
,
30
(
7
), pp.
2636
2641
.
17.
Ellyson
,
B.
,
Brochu
,
M.
, and
Brochu
,
M.
,
2017
, “
Characterization of Bending Vibration Fatigue of SLM Fabricated Ti-6Al-4V
,”
Int. J. Fatigue
,
99
(
1
), pp.
25
34
.
18.
Ellyson
,
B.
,
Chekir
,
N.
,
Brochu
,
M.
, and
Brochu
,
M.
,
2017
, “
Characterization of Bending Vibration Fatigue of WBD Fabricated Ti-6Al-4V
,”
Int. J. Fatigue
,
101
(
1
), pp.
36
44
.
19.
George
,
T. J.
,
2002
, “
Development of Methodologies for Ensuring Structural Safety of Gas Turbines and Launch Vehicles
,” PhD Dissertation,
The Ohio State University
.
20.
George
,
T. J.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
Nicholas
,
T.
,
Cross
,
C. J.
, and
Calcaterra
,
J.
,
2005
, “
Goodman Diagram Via Vibration-Based Fatigue Testing
,”
ASME J. Eng. Mater. Technol.
,
127
(
1
), pp.
58
64
.
21.
Scott-Emuakpor
,
O.
,
Schwartz
,
J.
,
George
,
T.
,
Holycross
,
C.
,
Cross
,
C.
, and
Slater
,
J.
,
2015
, “
Bending Fatigue Life Characterisation of Direct Metal Laser Sintering Nickel Alloy 718
,”
Fatigue Fract. Eng. Mater. Struct.
,
38
(
9
), pp.
1105
1117
.
22.
Scott-Emuakpor
,
O.
,
Holycross
,
C.
,
George
,
T.
,
Knapp
,
K.
, and
Beck
,
J.
,
2015
, “
Fatigue and Strength Studies of Titanium 6Al–4 V Fabricated by Direct Metal Laser Sintering
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022101
.
23.
Seidt
,
J. D.
,
2001
, “
Development of a Novel Vibration Based High Cycle Fatigue Test Method
,”
MS Thesis
,
The Ohio State University
.
24.
Boresi
,
A.
, and
Schmidt
,
R.
,
2002
,
Advanced Mechanics of Materials
, 6th ed.,
Wiley
,
New York
.
25.
Berke
,
R. B.
,
Furman
,
B. A.
,
Holycross
,
C.
, and
Scott-Emuakpor
,
O.
,
2020
, “
Damage Accumulation in a Novel High-Throughput Technique to Characterize High Cycle Fatigue
,”
ASTM J. Test. Eval.
,
49
(
1
), pp.
297
312
.
26.
Singhatanadgid
,
P.
, and
Na Songkhla
,
A.
,
2008
, “
An Experimental Investigation Into the Use of Scaling Laws for Predicting Vibration Responses of Rectangular Thin Plates
,”
J. Sound Vib.
,
311
(
1
), pp.
314
327
.
27.
Richardson
,
M.
, and
Formenti
,
D.
,
1982
, “
Parameter Estimation From Frequency Response Measurements
,”
The International Modal Analysis Conference
,
Orlando, FL
.
28.
Luo
,
A. C. J.
, and
Han
,
R. P. S.
,
1997
, “
A Quantitative Stability and Bifurcation Analyses of the Generalized Duffing Oscillator With Strong Nonlinearity
,”
J. Franklin Inst.
,
334
(
3
), pp.
447
459
.
29.
Amabili
,
M.
,
2004
, “
Nonlinear Vibrations of Rectangular Plates With Different Boundary Conditions: Theory and Experiments
,”
Comput. Struct.
,
82
(
31
), pp.
2587
2605
.
30.
Hao
,
Y. X.
,
Chen
,
L. H.
,
Zhang
,
W.
, and
Lei
,
J. G.
,
2008
, “
Nonlinear Oscillations, Bifurcations and Chaos of Functionally Graded Materials Plate
,”
J. Sound Vib.
,
312
(
4
), pp.
862
892
.
31.
Strogatz
,
S.
,
2015
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.