Abstract

Recent experimental observation [Milner, M. P., and Hutchens, S. B., 2021, “Multi-Crack Formation in Soft Solids During High Rate Cavity Expansion,” Mech. Mater., 154, p. 103741] suggests that crack formation during rapid cavity expansion in low modulus, highly deformable solids depends on the ratio of the rate of expansion and the acoustoelastic wave speed, similar to observations in rock and metal [Grady, D., and Kipp, M., 1987, “Dynamic Rock Fragmentation,” Fracture Mechanics of Rock, Elsevier, p. 429475]. Here, we explore the effect of material nonlinearity on predictions of the number of cracks formed at the cavity surface. We find that nonlinearity influences crack formation only when the cavity size normalized elasto-fracture length is greater than one and the cavity’s rate of expansion is greater than the acoustoelastic wave speed. The sensitivity of these predictions for two idealized fracture geometries, either a spherical damaged zone or discrete cracks, suggests a direction for further experimentation that may illuminate crack formation mechanisms in soft solids under dynamic loading.

References

1.
Milner
,
M. P.
, and
Hutchens
,
S. B.
,
2021
, “
Multi-Crack Formation in Soft Solids During High Rate Cavity Expansion
,”
Mech. Mater.
,
154
, p.
103741
.
2.
Schyma
,
C.
, and
Madea
,
B.
,
2012
, “
Evaluation of the Temporary Cavity in Ordnance Gelatine
,”
Forensic Sci. Int.
,
214
(
1–3
), pp.
82
87
.
3.
Kneubuehl
,
B. P.
,
Coupland
,
R. M.
,
Rothschild
,
M. A.
, and
Thali
,
M. J.
,
2011
,
Wound Ballistics: Basics and Applications
, 3rd ed.,
Springer-Verlag
,
Berlin
.
4.
Jussila
,
J.
,
2005
, “
Measurement of Kinetic Energy Dissipation With Gelatine Fissure Formation With Special Reference to Gelatine Validation
,”
Forensic Sci. Int.
,
150
(
1
), pp.
53
62
.
5.
Ragsdale
,
B. D.
, and
Josselson
,
A.
,
1988
, “
Predicting Temporary Cavity Size From Radial Fissure Measurements in Ordnance Gelatin
,”
J. Trauma
,
28
(
Suppl. 1
), pp.
S5
S9
.
6.
Bolliger
,
S. A.
,
Thali
,
M. J.
,
Bolliger
,
M. J.
, and
Kneubuehl
,
B. P.
,
2010
, “
Gunshot Energy Transfer Profile in Ballistic Gelatine, Determined With Computed Tomography Using the Total Crack Length Method
,”
Int. J. Legal Med.
,
124
(
6
), pp.
613
616
.
7.
Jussila
,
J.
,
2004
,
Wound Ballistic Simulation: Assessment of the Legitimacy of Law Enforcement Firearms
,
University of Helsinki
,
Helsinki
.
8.
Ouchterlony
,
F.
,
1974
, “
Fracture Mechanics Applied to Rock Blasting
,”
3rd Congress of International Society for Rock Mechanics
,
Denver, CO
, pp.
1377
1382
.
9.
Grady
,
D.
, and
Kipp
,
M.
,
1987
, “Dynamic Rock Fragmentation,”
Fracture Mechanics of Rock
,
B. K.
Atkinson
, ed.,
Elsevier
, London, pp.
429
475
.
10.
Field
,
J. E.
,
Walley
,
S. M.
,
Proud
,
W. G.
,
Goldrein
,
H. T.
, and
Siviour
,
C. R.
,
2004
, “
Review of Experimental Techniques for High Rate Deformation and Shock Studies
,”
Int. J. Impact Eng.
,
30
(
7
), pp.
725
775
.
11.
Song
,
B.
,
Casem
,
D.
, and
Kimberley
,
J.
,
2014
, “Dynamic Behavior of Materials,”
Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics
, Vol.
1
, B. Song, D. Casem, and J. Kimberley, eds.,
Conference Proceedings of the Society for Experimental Mechanics Series
,
Springer International Publishing
,
Lombard, IL
, pp.
1
477
.
12.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
Wiley-Interscience
,
New York
.
13.
Grady
,
D. E.
,
1982
, “
Local Inertial Effects in Dynamic Fragmentation
,”
J. Appl. Phys.
,
53
(
1
), pp.
322
325
.
14.
Grady
,
D.
, and
Kipp
,
M.
,
1985
, “
Mechanisms of Dynamic Fragmentation: Factors Governing Fragment Size
,”
Mech. Mater.
,
4
(
3–4
), pp.
311
320
.
15.
Grady
,
D.
,
1988
, “
The Spall Strength of Condensed Matter
,”
J. Mech. Phys. Solids
,
36
(
3
), pp.
353
384
.
16.
Grady
,
D. E.
,
2010
, “
Length Scales and Size Distributions in Dynamic Fragmentation
,”
Int. J. Fracture
,
163
(
1–2
), pp.
85
99
.
17.
Raayai-Ardakani
,
S.
,
Earl
,
D. R.
, and
Cohen
,
T.
,
2019
, “
The Intimate Relationship Between Cavitation and Fracture
,”
Soft Matter
,
15
(
25
), pp.
4999
5005
.
18.
Ogden
,
R. W.
,
2007
, “Incremental Statics and Dynamics of Pre-Stressed Elastic Materials,”
Waves in Nonlinear Pre-Stressed Materials. CISM Courses and Lectures
,
M.
Destrade
, and
G
.
Saccomandi
, eds.,
495
,
Springer
,
Vienna
, pp.
1
26
.
19.
Shams
,
M.
,
Destrade
,
M.
, and
Ogden
,
R. W.
,
2011
, “
Initial Stresses in Elastic Solids: Constitutive Laws and Acoustoelasticity
,”
Wave Motion
,
48
(
7
), pp.
552
567
.
20.
Galich
,
P. I.
, and
Rudykh
,
S.
,
2015
, “
Influence of Stiffening on Elastic Wave Propagation in Extremely Deformed Soft Matter: From Nearly Incompressible to Auxetic Materials
,”
Extreme Mech. Lett.
,
4
, pp.
156
161
.
21.
Abiza
,
Z.
,
Destrade
,
M.
, and
Ogden
,
R. W.
,
2012
, “
Large Acoustoelastic Effect
,”
Wave Motion
,
49
(
2
), pp.
364
374
.
22.
Sih
,
G. C.
, and
Irwin
,
G. R.
,
1970
, “
Dynamic Analysis for Two-Dimensional Multiple Crack Division
,”
Eng. Fract. Mech.
,
1
(
4
), pp.
603
614
.
23.
Rossmanith
,
H. P.
,
1983
,
Rock Fracture Mechanics
, Vol.
27
,
Springer
,
Vienna
.
24.
Kolvin
,
I.
,
Cohen
,
G.
, and
Fineberg
,
J.
,
2018
, “
Topological Defects Govern Crack Front Motion and Facet Formation on Broken Surfaces
,”
Nat. Mater.
,
17
(
2
), pp.
140
144
.
25.
Gent
,
A. N.
, and
Pulford
,
C. T. R.
,
1984
, “
Micromechanics of Fracture in Elastomers
,”
J. Mater. Sci.
,
19
(
11
), pp.
3612
3619
.
26.
Williams
,
M. L.
, and
Schapery
,
R. A.
,
1965
, “
Spherical Flaw Instability in Hydrostatic Tension
,”
Int. J. Fracture Mech.
,
1
(
1
), pp.
64
72
.
27.
Lin
,
Y. Y.
, and
Hui
,
C. Y.
,
2004
, “
Cavity Growth From Crack-Like Defects in Soft Materials
,”
Int. J. Fracture
,
126
(
3
), pp.
205
221
.
28.
Lopez-Pamies
,
O.
,
Idiart
,
M. I.
, and
Nakamura
,
T.
,
2011
, “
Cavitation in Elastomeric Solids: I—A Defect-Growth Theory
,”
J. Mech. Phys. Solids
,
59
(
8
), pp.
1464
1487
.
29.
Hutchens
,
S. B.
,
Fakhouri
,
S.
, and
Crosby
,
A. J.
,
2016
, “
Elastic Cavitation and Fracture Via Injection
,”
Soft Matter
,
12
(
9
), pp.
2557
2566
.
30.
Zhu
,
J.
,
Li
,
T.
,
Cai
,
S.
, and
Suo
,
Z.
,
2011
, “
Snap-Through Expansion of a Gas Bubble in an Elastomer
,”
J. Adhes.
,
87
(
5
), pp.
466
481
.
31.
Li
,
J.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2014
, “
Stiff, Strong, and Tough Hydrogels With Good Chemical Stability
,”
J. Mater. Chem. B
,
2
(
39
), pp.
6708
6713
.
32.
Milner
,
M. P.
, and
Hutchens
,
S. B.
,
2019
, “
A Device to Fracture Soft Solids at High Speeds
,”
Extreme Mech. Lett.
,
28
, pp.
69
75
.
33.
Li
,
J.
,
Illeperuma
,
W. R.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2014
, “
Hybrid Hydrogels With Extremely High Stiffness and Toughness
,”
ACS Macro Lett.
,
3
(
6
), pp.
520
523
.
You do not currently have access to this content.