Abstract

Viscoelastic materials are widely used for vibroacoustic solutions due to their ability to dissipate energy and thus mitigate vibrations and structure-borne sound. Wave propagation methods belong to a growing family of material characterization techniques based on the analysis of waveform patterns in one-dimensional structures. The time evolution of patterns results from material elasticity and damping. Conversely, it is possible to identify these properties once the pattern's time evolution is known. The most frequently used propagation methods, namely, Hopkinson bar methods, assume no dispersion, i.e., the complex elasticity modulus is not frequency dependent. However, this is not relevant for resilient materials such as elastomers. More recent approaches have been developed to measure frequency-dependent properties from a pulse propagating in a slender bar. In the previous works, we showed how to adapt these methods for shorter samples of materials. This represented a real advance, as extrusion is a cumbersome process for many materials. The main concept was to reconstruct the time history of the wave propagating in a composite structure composed of a long incident bar made of a known material and extended by a shorter sample bar. The sample material's viscoelastic properties were then determined in the frequency domain by optimization and wave fitting in the time domain. In industry, most insulation solutions that rely on mounts and bushings have to support structural weights. Consequently, it is particularly useful to measure the tangent viscoelastic properties of the material around the static stressed state and not only in stress-free conditions. Measuring strained materials not only requires modifying the experimental apparatus but also extending the scope of the underlying theory as the waves propagate differently in composite structures made of strained media. Here, we show how to overcome this challenging issue. The theoretical framework and its numerical implementation are described, and the method was validated experimentally by characterizing an elastomer sample under prestrained conditions.

References

1.
Krieger
,
I. M.
, and
Niu
,
T.-F.
,
1973
, “
A Rheometer for Oscillatory Studies of Nonlinear Fluids
,”
Rheol. Acta
,
12
(
4
), pp.
567
571
.
2.
Locati
,
G.
,
1978
, “
The Operation of the Rheovibron in the Shear Mode
,”
Polym. Eng. Sci.
,
18
(
10
), pp.
793
798
.
3.
Baumgaertel
,
M.
, and
Winter
,
H. H.
,
1989
, “
Determination of Discrete Relaxation and Retardation Time Spectra From Dynamic Mechanical Data
,”
Rheol. Acta
,
28
(
6
), pp.
511
519
.
4.
Menard
,
K. P.
,
2008
,
Dynamic Mechanical Analysis: A Practical Introduction
,
CRC Press
, Boca Raton, FL.
5.
Massa
,
D. J.
,
1973
, “
Measuring the Dynamic Moduli of Glassy Polymers: Analysis of the Rheovibron
,”
J. Appl. Phys.
,
44
(
6
), pp.
2595
2600
.
6.
Ramos
,
A. R.
,
Bates
,
F. S.
, and
Cohen
,
R. E.
,
1978
, “
Importance of the Massa Correction for Loss Tangent Measurements on the Rheovibron
,”
J. Polym. Sci. Polym. Phys. Ed.
,
16
(
4
), pp.
753
758
.
7.
Esmaeeli
,
R.
,
Aliniagerdroudbari
,
H.
,
Hashemi
,
S. R.
,
Chiran
,
J. B. R.
, and
Farhad
,
S.
,
2019
, “
Designing a New Dynamic Mechanical Analysis (DMA) System for Testing Viscoelastic Materials at High Frequencies
,”
Model. Simul. Eng.
,
2019
, p.
7026267
.
8.
Esmaeeli
,
R.
,
Nazari
,
A.
,
Aliniagerdroudbari
,
H.
,
Hashemi
,
S. R.
,
Alhadri
,
M.
,
Zakri
,
W.
, and
Farhad
,
S.
,
2018
, “
Heat Built up During Dynamic Mechanical Analysis (DMA) Testing of Rubber Specimens
,”
ASME 2018 International Mechanical Engineering Congress and Exposition
,
American Society of Mechanical Engineers Digital Collection
.
9.
Mayer
,
G.
, and
Gigon
,
J.
,
1955
, “
Mesure Par Ultrasons Des Constantes Élastiques Des Solides
,”
J. Phys. Radium
,
16
(
8–9
), pp.
704
706
.
10.
Oberst
,
H.
, and
Frankenfeld
,
K.
,
1952
, “
Über Die Dämpfung Der Biegeschwingungen Dünner Bleche Durch Fest Haftende Beläge
,” Acta Acust. Acust.,
2
(
6
), pp.
181
194
.
11.
Koruk
,
H.
, and
Sanliturk
,
K. Y.
,
2010
, “
On Measuring Dynamic Properties of Damping Materials Using Oberst Beam Method
,”
ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
,
American Society of Mechanical Engineers
, pp.
127
134
.
12.
Lewis
,
T.
,
Jackson
,
P.
, and
Nwankwo
,
O.
,
1999
, “
Design and Implementation of a Damping Material Measurement/Design System
,”
SAE Technical Paper No. 1999-01-1675
.
13.
Moritz
,
C.
, and
Deshpande
,
S.
,
2017
, “
SAE J1637 Vibration Damping Round Robin Study
,”
SAE Technical Paper
2017-01-1881.
14.
Saha
,
P.
, and
Chahine
,
J.
,
1993
, “
The Thought and Reasoning Behind Developing SAE J1637-Vibration Damping Test Method
,”
SAE Technical Paper
931320.
15.
Carvalho
,
L. R.
, and
Coraça
,
E. M.
,
2017
, “
Exploring Oberst Beam Standard Method for Viscoelastic Materials to Increase Test Confidence and Applicability
,”
SAE Technical Paper 2017-36-0179
.
16.
Santoni
,
A.
,
Bonfiglio
,
P.
,
Fausti
,
P.
, and
Pompoli
,
F.
,
2019
, “
Alternative Method to the Oberst Technique to Measure the Complex Elastic Modulus of Visco-Elastic Materials
,”
Noise Control Eng. J.
,
67
, pp.
1
10
.
17.
Kolsky
,
H.
,
1954
, “
LXXVIII. The Propagation of Longitudinal Elastic Waves Along Cylindrical Bars
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
45
(
366
), pp.
712
726
.
18.
Blanc
,
R. H.
,
1993
, “
Transient Wave Propagation Methods for Determining the Viscoelastic Properties of Solids
,”
Trans. Soc. Mech. Eng. J. Appl. Mech.
,
60
(
3
), p.
763
.
19.
Kolsky
,
H.
,
1956
, “
LXXI. The Propagation of Stress Pulses in Viscoelastic Solids
,”
Philos. Mag.
,
1
(
8
), pp.
693
710
.
20.
Bodner
,
S. R.
, and
Kolsky
,
H.
,
1958
, “
Stress Wave Propagation in Lead
,”
Proc. 3rd US Natl. Congr. Appl. Mech.
, vol.
495
,
ASME
, pp.
495
501
.
21.
Kolsky
,
H.
, and
Lee
,
S. S.
,
1962
, “
The Propagation and Reflection of Stress Pulses in Linear Viscoelastic Media
,”
Division of Applied Mathematics, Brown University, Providence, RI, DTIC Document
.
22.
Kolsky
,
H.
,
1963
,
Stress Waves in Solids
, Vol.
1098
,
Courier Corporation
,
New York
.
23.
Blanc
,
R. H.
, and
Champomier
,
F. P.
,
1976
, “
A Wave-Front Method for Determining the Dynamic Properties of High Damping Materials
,”
J. Sound Vib.
,
49
(
1
), pp.
37
44
.
24.
Lundberg
,
B.
, and
Blanc
,
R. H.
,
1988
, “
Determination of Mechanical Material Properties From the Two-Point Response of an Impacted Linearly Viscoelastic Rod Specimen
,”
J. Sound Vib.
,
126
(
1
), pp.
97
108
.
25.
Christensen
,
R.
,
2012
,
Theory of Viscoelasticity: An Introduction
,
Elsevier
,
New York
.
26.
Theocaris
,
P. S.
, and
Papadopoulou
,
N.
,
1978
, “
Propagation of Stress Waves in Viscoelastic Media
,”
Polymer
,
19
(
2
), pp.
215
219
.
27.
Sogabe
,
Y.
,
Kishida
,
K.
, and
Nakagawa
,
K.
,
1982
, “
Wave Propagation Analysis for Determining the Dynamic Properties of High Damping Alloys
,”
Bull. JSME
,
25
(
201
), pp.
321
327
.
28.
Benatar
,
A.
,
Rittel
,
D.
, and
Yarin
,
A. L.
,
2003
, “
Theoretical and Experimental Analysis of Longitudinal Wave Propagation in Cylindrical Viscoelastic Rods
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1413
1431
.
29.
Aleyaasin
,
M.
, and
Harrigan
,
J. J.
,
2010
, “
Wave Dispersion and Attenuation in Viscoelastic Polymeric Bars: Analysing the Effect of Lateral Inertia
,”
Int. J. Mech. Sci.
,
52
(
5
), pp.
754
757
.
30.
Lemerle
,
P.
, and
Berthelot
,
A.
,
2001
, “
Study of Phonography Cartridges for Determining the Viscoelastic Properties of Materials by a Wave Propagation Method
,”
Noise Control Eng. J.
,
49
(
5
), pp.
231
237
.
31.
Orfanidis
,
S. J.
,
2002
,
Electromagnetic Waves and Antennas
,
Rutgers University New Brunswick
,
NJ
.
32.
Lemerle
,
P.
,
2002
, “
Measurement of the Viscoelastic Properties of Damping Materials: Adaptation of the Wave Propagation Method to Test Samples of Short Length
,”
J. Sound Vib.
,
250
(
2
), pp.
181
196
.
33.
Lemerle
,
P.
,
2018
, “
Mesure Des Propriétés Viscoélastiques Des Matériaux Précontraints Par Propagation d’onde Acoustique
.,”
Notes Sci. Tech., NS 359, Notes scientifiques et techniques NS 359, Institut National de Recherche et de Sécurité (INRS)
, p.
65
.
34.
Hill
,
R.
, and
Sneddon
,
I. N.
,
1960
,
Progress in Solid Mechanics
, Vol.
I
,
I. N.
Sneddon
and
R.
Hill
, eds.,
North-Holland Publishing Company
,
Amsterdam
, p.
448
.
35.
Blanc
,
R. H.
,
1971
, “
Détermination de l’équation de Comportement Des Corps Viscoélastiques Linéaires Par Une Méthode d’impulsion
,”
Doctoral dissertation
,
Marseille, France
.
36.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Glob. Optim.
,
11
(
4
), pp.
341
359
.
You do not currently have access to this content.