Abstract

In this paper, long short-term memory (LSTM) networks are used in an original way to model the behavior of a viscoplastic material solicited under changing loading conditions. The material behavior is dependent on the history effects of plasticity which can be visible during strain rate jumps or temperature changes. Due to their architecture and internal state (memory), the LSTM networks have the ability to remember past data to update their current state, unlike the traditional artificial neural networks (ANNs) which fail to capture history effects. Specific LSTM networks are designed and trained to reproduce the complex behavior of a viscoplastic solder alloy subjected to strain rate jumps, temperature changes, or loading–unloading cycles. The training data sets are numerically generated using the constitutive viscoplastic law of Anand which is very popular for describing solder alloys. The Anand model serves also as a reference to evaluate the performances of the LSTM networks on new data. It is demonstrated that this class of networks is remarkably well suited for replicating the history plastic effects under all the tested loading conditions.

References

1.
Plumbridge
,
W. J.
,
1996
, “
Solders in Electronics
,”
J. Mater. Sci.
,
31
(
10
), pp.
2501
2514
.
2.
Abtew
,
M.
, and
Selvaduray
,
G.
,
2000
, “
Lead-Free Solders in Microelectronics
,”
Mater. Sci. Eng., R
,
27
(
5–6
), pp.
95
141
.
3.
Hwang
,
J.
,
2004
,
Implementing Lead-Free Electronics
,
McGraw-Hill
,
New York
.
4.
Collins
,
M. N.
,
Dalton
,
E.
, and
Punch
,
J.
,
2016
, “
Microstructural Influences on Thermomechanical Fatigue Behaviour of Third Generation High Ag Content Pb-Free Solder Alloys
,”
J. Alloys Compd.
,
688
, pp.
164
170
.
5.
Le
,
V. N.
,
Benabou
,
L.
,
Tao
,
Q. B.
, and
Etgens
,
V.
,
2017
, “
Modelling of Intergranular Thermal Fatigue Cracking of a Lead-Free Solder Joint in a Power Electronic Module
,”
Int. J. Solids Struct.
,
106–107
, pp.
1
12
.
6.
Benabou
,
L.
,
Vivet
,
L.
,
Tao
,
Q. B.
, and
Tran
,
N. H.
,
2018
, “
Microstructural Effects of Isothermal Aging on a Doped SAC Solder Alloy
,”
Int. J. Mater. Res.
,
109
(
1
), pp.
76
82
.
7.
Anand
,
L.
,
1985
, “
Constitutive Equations for Hot-Working of Metals
,”
Int. J. Plast.
,
1
(
3
), pp.
213
231
.
8.
Brown
,
S. B.
,
Kim
,
K. H.
, and
Anand
,
L.
,
1989
, “
An Internal Variable Constitutive Model for Hot Working of Metals
,”
Int. J. Plast.
,
5
(
2
), pp.
95
130
.
9.
Semiatin
,
S. L.
, and
Jonas
,
J. J.
,
1984
,
Formability and Workability of Metals: Plastic Instability and Flow Localization
,
American Society for Metals
,
Metals Park, OH
.
10.
Sellars
,
C. M.
, and
Tegart
,
W. J. M.
,
1972
, “
Hot Workability
,”
Int. Mater. Rev.
,
17
(
1
), pp.
1
24
.
11.
Zhang
,
L.
,
Han
,
J. G.
,
Guo
,
Y.
, and
He
,
C. W.
,
2014
, “
Anand Model and FEM Analysis of SnAgCuZn Lead-Free Solder Joints in Wafer Level Chip Scale Packaging Devices
,”
Microelectron. Reliab.
,
54
(
1
), pp.
281
286
.
12.
Le
,
V. N.
,
Benabou
,
L.
,
Etgens
,
V.
, and
Tao
,
Q. B.
,
2016
, “
Finite Element Analysis of the Effect of Process-Induced Voids on the Fatigue Lifetime of a Lead-Free Solder Joint Under Thermal Cycling
,”
Microelectron. Reliab.
,
65
, pp.
243
254
.
13.
Lin
,
Y. C.
,
Zhang
,
J.
, and
Zhong
,
J.
,
2008
, “
Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel
,”
Comp. Mater. Sci.
,
43
(
4
), pp.
752
758
.
14.
Jenab
,
A.
,
Karimi Taheri
,
A.
, and
Jenab
,
K.
,
2013
, “
The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates
,”
J. Mater. Eng. Perform.
,
22
(
3
), pp.
903
910
.
15.
Jenab
,
A.
,
Sari Sarraf
,
I.
,
Green
,
D. E.
,
Rahmaan
,
T.
, and
Worswick
,
M. J.
,
2016
, “
The Use of Genetic Algorithm and Neural Network to Predict Rate-Dependent Tensile Flow Behaviour of AA5182-O Sheets
,”
Mater. Des.
,
94
, pp.
262
273
.
16.
Huber
,
N.
, and
Tsakmakis
,
C.
,
2001
, “
A Neural Network Tool for Identifying the Material Parameters of a Finite Deformation Viscoplasticity Model With Static Recovery
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
3–5
), pp.
353
384
.
17.
Mahmoudi
,
A. H.
, and
Nourbakhsh
,
S. H.
,
2011
, “
A Neural Networks Approach to Characterize Material Properties Using the Spherical Indentation Test
,”
Procedia Eng.
,
10
, pp.
3062
3067
.
18.
Stoffel
,
M.
,
Bamer
,
F.
, and
MArkert
,
B.
,
2018
, “
Artificial Neural Networks and Intelligent Finite Elements in Non-linear Structural Mechanics
,”
Thin-Walled Struct.
,
131
, pp.
102
106
.
19.
Jung
,
S.
, and
Ghaboussi
,
J.
,
2006
, “
Neural Network Constitutive Model for Rate-Dependent Materials
,”
Comput. Struct.
,
84
(
15–16
), pp.
955
963
.
20.
Settgast
,
C.
,
Abendroth
,
M.
, and
Kuna
,
M.
,
2019
, “
Constitutive Modeling of Plastic Deformation Behavior of Open-Cell Foam Structures Using Neural Networks
,”
Mech. Mater.
,
131
, pp.
1
10
.
21.
Stoffel
,
M.
,
Bamer
,
F.
, and
Markert
,
B.
,
2019
, “
Neural Network Based Constitutive Modeling of Nonlinear Viscoplastic Structural Response
,”
Mech. Res. Commun.
,
95
, pp.
85
88
.
22.
Benabou
,
L.
,
2021
, “
Implementation of a Neural Network Into a User-Material Subroutine for Finite Element Simulation of Material Viscoplasticity
,”
ASME J. Eng. Mater. Technol.
,
143
(
4
), p.
041001
.
23.
Mozaffar
,
M.
,
Bostanabad
,
R.
,
Chen
,
W.
,
Ehmann
,
K.
,
Cao
,
J.
, and
Bessa
,
M. A.
,
2019
, “
Deep Learning Predicts Path-Dependent Plasticity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
52
), pp.
26414
26420
.
24.
Koeppe
,
A.
,
Bamer
,
F.
, and
Markert
,
B.
,
2020
, “
An Intelligent Nonlinear Meta Element for Elastoplastic Continua: Deep Learning Using a New Time-Distributed Residual U-Net Architecture
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113088
.
25.
Stoffel
,
M.
,
Bamer
,
F.
, and
Markert
,
B.
,
2020
, “
Deep Convolutional Neural Networks in Structural Dynamics Under Consideration of Viscoplastic Material Behaviour
,”
Mech. Res. Commun.
,
108
, p.
103565
.
26.
Stoffel
,
M.
,
Gulakala
,
R.
,
Bamer
,
F.
, and
Markert
,
B.
,
2020
, “
Artificial Neural Networks in Structural Dynamics: A New Modular Radial Basis Function Approach vs. Convolutional and Feedforward Topologies
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112989
.
27.
Abueidda
,
D. W.
,
Koric
,
S.
,
Sobh
,
N. A.
, and
Sehitoglu
,
H.
,
2021
, “
Deep Learning for Plasticity and Thermo-viscoplasticity
,”
Int. J. Plast.
,
136
, p.
102852
.
28.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
29.
Li
,
X.
, and
Wu
,
X.
,
2015
, “
Constructing Long Short-Term Memory Based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition
,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Australia
.
30.
Carbune
,
V.
,
Gonnet
,
P.
,
Deselaers
,
T.
,
Rowley
,
H. A.
,
Daryin
,
A.
,
Calvo
,
M.
,
Wang
,
L. L.
,
Keysers
,
D.
,
Feuz
,
S.
, and
Gervais
,
P.
,
2020
, “
Fast Multi-language LSTM-Based Online Handwriting Recognition
,”
Int. J. Doc. Anal. Recog.
,
23
(
2
), pp.
89
102
.
31.
Fischer
,
T.
, and
Krauss
,
C.
,
2018
, “
Deep Learning With Long Short-Term Memory Networks for Financial Market Predictions
,”
Eur. J. Oper. Res.
,
270
(
2
), pp.
654
669
.
32.
Cao
,
J.
,
Li
,
Z.
, and
Li
,
J.
,
2019
, “
Financial Time Series Forecasting Model Based on CEEMDAN and LSTM
,”
Phys. A
,
519
, pp.
127
139
.
33.
Pham
,
T.
,
Tran
,
T.
,
Phung
,
D.
, and
Venkatesh
,
S.
,
2017
, “
Predicting Healthcare Trajectories From Medical Records: A Deep Learning Approach
,”
J. Biomed. Inf.
,
69
, pp.
218
229
.
34.
Shahid
,
F.
,
Zameer
,
A.
, and
Muneeb
,
M.
,
2020
, “
Predictions for COVID-19 With Deep Learning Models of LSTM, GRU and Bi-LSTM
,”
Chaos Soliton. Fract.
,
140
, p.
110212
.
35.
Yu
,
Y.
,
Si
,
X.
,
Hu
,
C.
, and
Zhang
,
J.
,
2019
, “
A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures
,”
Neural Comput.
,
31
(
7
), pp.
1235
1270
.
36.
Sainath
,
T. N.
,
Vinyals
,
O.
,
Senior
,
A.
, and
Sak
,
H.
,
2015
, “
Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Networks
,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Australia
.
37.
Kapoor
,
R.
,
Pal
,
D.
, and
Chakravartty
,
J. K.
,
2005
, “
Use of Artificial Neural Networks to Predict the Deformation Behavior of Zr-2.5Nb-0.5Cu
,”
J. Mater. Process. Technol.
,
169
(
2
), pp.
199
205
.
38.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
.
Adam: a Method for Stochastic Optimization, arXiv preprint arXiv:1412.6980
.
39.
Matlab
,
2018
,
9.7.0.1190202 (R2019b), The MathWorks Inc., Natick, MA
.
40.
Tao
,
Q. B.
,
Benabou
,
L.
,
Le
,
V. N.
,
Hwang
,
H.
, and
Luu
,
D. B.
,
2017
,
“Viscoplastic Characterization and Post-rupture Microanalysis of a Novel Lead-Free Solder With Small Additions of Bi, Sb and Ni
,”
J. Alloys Compd.
,
694
, pp.
892
904
.
41.
Abaqus/Standard User’s Manual, Version 6.12, 2012, Dassault Systèmes Simulia, Providence, RI
.
You do not currently have access to this content.