Abstract

This study investigates experimentally and numerically the response of a magnetorheological elastomer (MRE) layer placed atop an electromagnetic coil. The MRE layer is deflected upon application of a current in the coil, which creates highly nonuniform magnetic fields. Isotropic and transversely isotropic layers (i.e., containing chains of magnetic particles) are tested experimentally, and the isotropic layer exhibits the largest deflection. To enhance the energetic efficiency of the model device, an iron core is introduced inside the electromagnetic coil, thereby leading to an increase in the resulting magnetic field near the center of the MRE layer. In parallel, the boundary value problem —including the MRE layer, the coil, the core (if present) and the surrounding air—is modeled numerically. For this, a magneto-mechanical, vector potential-based variational formulation is implemented in a standard three-dimensional finite element model at finite strains. For the material description, a recently proposed analytical homogenization-guided model is used to analyze the MRE in the “coil-only” configuration. It is then employed to predict the response of the layer in the “coil plus core” configuration, thus circumventing the need for a separate material characterization procedure. The proposed numerical simulation strategy provides a deeper understanding of the underlying complexity of the magnetic fields and of their interaction with the MRE layer. This study also reveals the importance of modeling the entire setup for predicting the response of MRE materials and, as a result, constitutes a step toward designing more efficient MRE-based devices.

References

1.
Rigbi
,
Z.
, and
Jilken
,
L.
,
1983
, “
The Response of an Elastomer Filled With Soft Ferrite to Mechanical and Magnetic Influences
,”
J. Magn. Magn. Mater.
,
37
(
3
), pp.
267
276
. 10.1016/0304-8853(83)90055-0
2.
Li
,
Y.
,
Li
,
J.
,
Li
,
W.
, and
Du
,
H.
,
2014
, “
A State-of-the-Art Review on Magnetorheological Elastomer Devices
,”
Smart Mater. Struct.
,
23
(
12
), p.
123001
. 10.1088/0964-1726/23/12/123001
3.
Elie
,
L. D.
,
Ginder
,
J. M.
,
Nichols
,
M. E.
, and
Stewart
,
W. M.
,
2002
, “
Variable Stiffness Bushing Using Magnetorheological Elastomers
,” European Patent No. EP0784163A.
4.
Crist
,
R. J.
,
2009
, “Active Vibrational Damper,” U.S. Patent No. 75,846,85B.
5.
Marur
,
P. R.
,
2013
, “
Magneto-Rheological Elastomer-Based Vehicle Suspension
,” U.S. Patent No. 20,130,087.
6.
Thorsteinsson
,
F.
,
Gudmundsson
,
I.
, and
Lecomte
,
C.
,
2015
, “
Prosthetic and Orthotic Devices Having Magnetorheological Elastomer Spring With Controllable Stiffness
,” U.S. Patent No. 90,787,34B.
7.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Clark
,
S. M.
,
2000
, “
Controllable-Stiffness Components Based on Magnetorheological Elastomers
,”
SPIE’s 7th Annual International Symposium on Smart Structures and Materials
,
Newport Beach, CA
,
June 22
,
International Society for Optics and Photonics
, pp.
418
425
.
8.
Farshad
,
M.
, and
Le Roux
,
M.
,
2004
, “
A New Active Noise Abatement Barrier System
,”
Polym. Test.
,
23
(
7
), pp.
855
860
. 10.1016/j.polymertesting.2004.02.003
9.
Böse
,
H.
,
Rabindranath
,
R.
, and
Ehrlich
,
J.
,
2012
, “
Soft Magnetorheological Elastomers as New Actuators for Valves
,”
J. Intell. Mater. Syst. Struct.
,
23
(
9
), pp.
989
994
. 10.1177/1045389X11433498
10.
Stepanov
,
G.
,
Kramarenko
,
E. Y.
, and
Semerenko
,
D.
,
2013
, “
Magnetodeformational Effect of the Magnetoactive Elastomer and Its Possible Applications
,”
J. Phys. Conf. Series
,
412
, p.
012031
. 10.1088/1742-6596/412/1/012031
11.
Ahamed
,
R.
,
Choi
,
S.-B.
, and
Ferdaus
,
M. M.
,
2018
, “
A State of Art on Magneto-Rheological Materials and Their Potential Applications
,”
J. Intell. Mater. Syst. Struct.
,
29
(
10
), pp.
2051
2095
. 10.1177/1045389X18754350
12.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Rob.
,
4
(
33
), p.
eaax7329
. 10.1126/scirobotics.aax7329
13.
Ren
,
Z.
,
Hu
,
W.
,
Dong
,
X.
, and
Sitti
,
M.
,
2019
, “
Multi-Functional Soft-Bodied Jellyfish-Like Swimming
,”
Nat. Commun.
,
10
(
1
), p.
2703
. 10.1038/s41467-019-10549-7
14.
Xu
,
T.
,
Zhang
,
J.
,
Salehizadeh
,
M.
,
Onaizah
,
O.
, and
Diller
,
E.
,
2019
, “
Millimeter-Scale Flexible Robots With Programmable Three-Dimensional Magnetization and Motions
,”
Sci. Rob.
,
4
(
29
), p.
eaav4494
. 10.1126/scirobotics.aav4494
15.
Borcea
,
L.
, and
Bruno
,
O.
,
2001
, “
On the Magneto-Elastic Properties of Elastomer–Ferromagnet Composites
,”
J. Mech. Phys. Solids
,
49
(
12
), pp.
2877
2919
. 10.1016/S0022-5096(01)00108-9
16.
Danas
,
K.
,
Kankanala
,
S.
, and
Triantafyllidis
,
N.
,
2012
, “
Experiments and Modeling of Iron-Particle-Filled Magnetorheological Elastomers
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
120
138
. 10.1016/j.jmps.2011.09.006
17.
Kalina
,
K. A.
,
Metsch
,
P.
, and
Kästner
,
M.
,
2016
, “
Microscale Modeling and Simulation of Magnetorheological Elastomers at Finite Strains: A Study on the Influence of Mechanical Preloads
,”
Int. J. Solids Struct.
,
102–103
, pp.
286
296
. 10.1016/j.ijsolstr.2016.10.019
18.
Danas
,
K.
,
2017
, “
Effective Response of Classical, Auxetic and Chiral Magnetoelastic Materials by Use of a New Variational Principle
,”
J. Mech. Phys. Solids
,
105
, pp.
25
53
. 10.1016/j.jmps.2017.04.016
19.
Lefèvre
,
V.
,
Danas
,
K.
, and
Lopez-Pamies
,
O.
,
2017
, “
A General Result for the Magnetoelastic Response of Isotropic Suspensions of Iron and Ferrofluid Particles in Rubber, With Applications to Spherical and Cylindrical Specimens
,”
J. Mech. Phys. Solids
,
107
, pp.
343
364
. 10.1016/j.jmps.2017.06.017
20.
Keip
,
M.-A.
, and
Rambausek
,
M.
,
2017
, “
Computational and Analytical Investigations of Shape Effects in the Experimental Characterization of Magnetorheological Elastomers
,”
Int. J. Solids Struct.
,
121
, pp.
1
20
. 10.1016/j.ijsolstr.2017.04.012
21.
Kalina
,
K. A.
,
Brummund
,
J.
,
Metsch
,
P.
,
Kästner
,
M.
,
Borin
,
D. Y.
,
Linke
,
J. M.
, and
Odenbach
,
S.
,
2017
, “
Modeling of Magnetic Hystereses in Soft MREs Filled With NdFeB Particles
,”
Smart Mater. Struct.
,
26
(
10
), p.
105019
. 10.1088/1361-665X/aa7f81
22.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
. 10.1038/s41586-018-0185-0
23.
Zhao
,
R.
,
Kim
,
Y.
,
Chester
,
S. A.
,
Sharma
,
P.
, and
Zhao
,
X.
,
2019
, “
Mechanics of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
244
263
. 10.1016/j.jmps.2018.10.008
24.
Psarra
,
E.
,
Bodelot
,
L.
, and
Danas
,
K.
,
2019
, “
Wrinkling to Crinkling Transitions and Curvature Localization in a Magnetoelastic Film Bonded to a Non-Magnetic Substrate
,”
J. Mech. Phys. Solids
,
133
, p.
103734
. 10.1016/j.jmps.2019.103734
25.
Karami Mohammadi
,
N.
,
Galich
,
P. I.
,
Krushynska
,
A. O.
, and
Rudykh
,
S.
,
2019
, “
Soft Magnetoactive Laminates: Large Deformations, Transverse Elastic Waves and Band Gaps Tunability by a Magnetic Field
,”
ASME J. Appl. Mech.
,
86
(
11
), p.
111001
. 10.1115/1.4044497
26.
Mukherjee
,
D.
,
Bodelot
,
L.
, and
Danas
,
K.
,
2020
, “
Microstructurally-Guided Explicit Continuum Models for Isotropic Magnetorheological Elastomers With Iron Particles
,”
Int. J. Non-Linear Mech.
,
120
, p.
103380
. 10.1016/j.ijnonlinmec.2019.103380
27.
Lefèvre
,
V.
,
Danas
,
K.
, and
Lopez-Pamies
,
O.
,
2020
, “
Two Families of Explicit Models Constructed From a Homogenization Solution for the Magnetoelastic Response of MREs Containing Iron and Ferrofluid Particles
,”
Int. J. Non-Linear Mech.
,
119
, p.
103362
. 10.1016/j.ijnonlinmec.2019.103362
28.
Rambausek
,
M.
, and
Danas
,
K.
,
2021
, “
Bifurcation of Magnetorheological Film–Substrate Elastomers Subjected to Biaxial Pre-Compression and Transverse Magnetic Fields
,”
Int. J. Non-Linear Mech.
,
128
, p.
103608
. 10.1016/j.ijnonlinmec.2020.103608
29.
Chen
,
W.
, and
Wang
,
L.
,
2020
, “
Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041002
. 10.1115/1.4045716
30.
Zhang
,
R.
,
Wu
,
S.
,
Ze
,
Q.
, and
Zhao
,
R.
,
2020
, “
Micromechanics Study on Actuation Efficiency of Hard-Magnetic Soft Active Materials
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091008
. 10.1115/1.4047291
31.
Schubert
,
G.
, and
Harrison
,
P.
,
2015
, “
Large-Strain Behaviour of Magneto-Rheological Elastomers Tested Under Uniaxial Compression and Tension, and Pure Shear Deformations
,”
Polym. Test.
,
42
, pp.
122
134
. 10.1016/j.polymertesting.2015.01.008
32.
Psarra
,
E.
,
Bodelot
,
L.
, and
Danas
,
K.
,
2017
, “
Two-Field Surface Pattern Control Via Marginally Stable Magnetorheological Elastomers
,”
Soft Matter
,
13
(
37
), pp.
6576
6584
. 10.1039/C7SM00996H
33.
Bodelot
,
L.
,
Voropaieff
,
J.-P.
, and
Pössinger
,
T.
,
2018
, “
Experimental Investigation of the Coupled Magneto-Mechanical Response in Magnetorheological Elastomers
,”
Exp. Mech.
,
58
(
2
), pp.
207
221
. 10.1007/s11340-017-0334-7
34.
Bastola
,
A. K.
, and
Hossain
,
M.
,
2020
, “
A Review on Magneto-Mechanical Characterizations of Magnetorheological Elastomers
,”
Compos. Part B: Eng.
,
200
, p.
108348
. 10.1016/j.compositesb.2020.108348
35.
Pössinger
,
T.
,
Bolzmacher
,
C.
,
Bodelot
,
L.
, and
Triantafyllidis
,
N.
,
2014
, “
Influence of Interfacial Adhesion on the Mechanical Response of Magneto-Rheological Elastomers at High Strain
,”
Microsyst. Technol.
,
20
(
4
), pp.
803
814
. 10.1007/s00542-013-2036-0
36.
Feng
,
J.
,
Xuan
,
S.
,
Lv
,
Z.
,
Pei
,
L.
,
Zhang
,
Q.
, and
Gong
,
X.
,
2018
, “
Magnetic-Field-Induced Deformation Analysis of Magnetoactive Elastomer Film by Means of DIC, LDV, and FEM
,”
Ind. Eng. Chem. Res.
,
57
(
9
), pp.
3246
3254
. 10.1021/acs.iecr.7b04873
37.
Sutton
,
M. A.
,
Orteu
,
J.-J.
, and
Schreier
,
H. W.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements. Basic Concepts, Theory and Applications
,
Springer
,
New York
.
38.
Varga
,
Z.
,
Filipcsei
,
G.
, and
Zrínyi
,
M.
,
2006
, “
Magnetic Field Sensitive Functional Elastomers With Tuneable Elastic Modulus
,”
Polymer
,
47
(
1
), pp.
227
233
. 10.1016/j.polymer.2005.10.139
39.
Danas
,
K.
, and
Triantafyllidis
,
N.
,
2014
, “
Instability of a Magnetoelastic Layer Resting on a Non-Magnetic Substrate
,”
J. Mech. Phys. Solids
,
69
, pp.
67
83
. 10.1016/j.jmps.2014.04.003
40.
Dorfmann
,
A.
, and
Ogden
,
R.
,
2003
, “
Magnetoelastic Modelling of Elastomers
,”
Eur. J. Mech. A/Solids
,
22
(
4
), pp.
497
507
. 10.1016/S0997-7538(03)00067-6
41.
Thomas
,
J. D.
, and
Triantafyllidis
,
N.
,
2009
, “
On Electromagnetic Forming Processes in Finitely Strained Solids: Theory and Examples
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1391
1416
. 10.1016/j.jmps.2009.04.004
42.
Ammari
,
H.
,
Buffa
,
A.
, and
Nédélec
,
J.-C.
,
2000
, “
A Justification of Eddy Currents Model for the Maxwell Equations
,”
SIAM J. Appl. Math.
,
60
(
5
), pp.
1805
1823
. 10.1137/S0036139998348979
43.
Nédélec
,
J.-C.
,
1980
, “
Mixed Finite Elements in R 3
,”
Numer. Math.
,
35
, pp.
315
341
. 10.1007/BF01396415
44.
Coulomb
,
J.-L.
,
1981
, “
Finite Elements Three Dimensional Magnetic Field Computation
,”
IEEE Trans. Magn.
,
17
(
6
), pp.
3241
3246
. 10.1109/TMAG.1981.1061587
45.
Biro
,
O.
, and
Preis
,
K.
,
1989
, “
On the Use of the Magnetic Vector Potential in the Finite-Element Analysis of Three-Dimensional Eddy Currents
,”
IEEE Trans. Magn.
,
25
(
4
), pp.
3145
3159
. 10.1109/20.34388
46.
Landis
,
C. M.
,
2002
, “
A New Finite-Element Formulation for Electromechanical Boundary Value Problems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
613
628
. 10.1002/nme.518
47.
Semenov
,
A. S.
,
Kessler
,
H.
,
Liskowsky
,
A.
, and
Balke
,
H.
,
2006
, “
On a Vector Potential Formulation for 3D Electromechanical Finite Element Analysis
,”
Commun. Numer. Methods Eng.
,
22
(
5
), pp.
357
375
. 10.1002/cnm.818
48.
Stark
,
S.
,
Semenov
,
A. S.
, and
Balke
,
H.
,
2015
, “
On the Boundary Conditions for the Vector Potential Formulation in Electrostatics
,”
Int. J. Numer. Methods Eng.
,
102
(
11
), pp.
1704
1732
. 10.1002/nme.4859
49.
Kankanala
,
S.
, and
Triantafyllidis
,
N.
,
2004
, “
On Finitely Strained Magnetorheological Elastomers
,”
J. Mech. Phys. Solids
,
52
(
12
), pp.
2869
2908
. 10.1016/j.jmps.2004.04.007
50.
Bustamante
,
R.
,
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2008
, “
On Variational Formulations in Nonlinear Magnetoelastostatics
,”
Math. Mech. Solids
,
13
, pp.
725
745
. 10.1177/1081286507079832
51.
Lopez-Pamies
,
O.
,
Goudarzi
,
T.
, and
Danas
,
K.
,
2013
, “
The Nonlinear Elastic Response of Suspensions of Rigid Inclusions in Rubber: II—A Simple Explicit Approximation for Finite-Concentration Suspensions
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
19
37
. 10.1016/j.jmps.2012.08.013
52.
Forbes
,
L. K.
,
Crozier
,
S.
, and
Doddrell
,
D. M.
,
1997
, “
Rapid Computation of Static Fields Produced by Thick Circular Solenoids
,”
IEEE Trans. Magn.
,
33
(
5
), pp.
4405
4410
. 10.1109/20.620453
53.
Dorn
,
C.
,
Bodelot
,
L.
, and
Danas
,
K.
,
2021
, “
Abaqus UEL Subroutine for a Soft MRE Device Comprising a Coil and Iron Core Using the Vector Potential in Three-Dimensions
.” 10.5281/zenodo.4597372
You do not currently have access to this content.