Abstract

This paper presents the Eshelby’s tensor of a polygonal inclusion with a polynomial eigenstrain, which can provide an elastic solution to an arbitrary, convex inclusion with a continuously distributed eigenstrain by the Taylor series approximation. The Eshelby’s tensor for plane strain problem is derived from the fundamental solution of isotropic Green’s function with the Hadmard regularization, which is composed of the integrals of the derivatives of the harmonic and biharmonic potentials over the source domain. Using the Green’s theorem, they are converted to two line (contour) integrals over the polygonal cross section. This paper evaluates them by direct analytical integrals. Following Mura’s work, this paper formulates the method to derive linear, quadratic, and higher order of the Eshelby’s tensor in the polynomial form for arbitrary, convex polygonal shapes of inclusions. Numerical case studies were performed to verify the analytic results with the original Eshelby’s solution for a uniform eigenstrain in an ellipsoidal domain. It is of significance to consider higher order terms of eigenstrain for the polygon-shape inclusion problem because the eigenstrain distribution is generally non-uniform when Eshelby’s equivalent inclusion method is used. The stress disturbance due to a triangle particle in an infinite domain is demonstrated by comparison with the results of the finite element method (FEM). The present solution paves the way to accurately simulate the particle-particle, partial-boundary interactions of polygon-shape particles.

References

References
1.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London., A.
,
241
(
1226
), pp.
376
396
. 10.1098/rspa.1957.0133
2.
Zhou
,
K.
,
Hoh
,
H. J.
,
Wang
,
X.
,
Keer
,
L. M.
,
Pang
,
J. H.
,
Song
,
B.
, and
Wang
,
Q. J.
,
2013
, “
A Review of Recent Works on Inclusions
,”
Mech. Mater.
,
60
, pp.
144
158
. 10.1016/j.mechmat.2013.01.005
3.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids. Struct.
,
40
(
13–14
), pp.
3647
3679
. 10.1016/S0020-7683(03)00143-4
4.
Yin
,
H. M.
,
Buttlar
,
W. G.
,
Paulino
,
G. H.
, and
Benedetto
,
H. D.
,
2008
, “
Assessment of Existing Micro-Mechanical Models for Asphalt Mastics Considering Viscoelastic Effects
,”
Road Mater. Pavement Design
,
9
(
1
), pp.
31
57
. 10.1080/14680629.2008.9690106
5.
Jang
,
S.-H.
,
Hochstein
,
D. P.
,
Kawashima
,
S.
, and
Yin
,
H.
,
2017
, “
Experiments and Micromechanical Modeling of Electrical Conductivity of Carbon Nanotube/cement Composites With Moisture
,”
4Cement Concrete Composites
,
77
, pp.
49
59
. 10.1016/j.cemconcomp.2016.12.003
6.
Ma
,
H. M.
, and
Gao
,
X. L.
,
2009
, “
Eshelby’s Tensors for Plane Strain and Cylindrical Inclusions Based on a Simplified Strain Gradient Elasticity Theory
,”
Acta Mech.
,
211
(
1–2
), pp.
115
129
. 10.1007/s00707-009-0221-0
7.
Trotta
,
S.
,
Marmo
,
F.
, and
Rosati
,
L.
,
2017
, “
Evaluation of the Eshelby Tensor for Polygonal Inclusions
,”
Compos. Part B: Eng.
,
115
, pp.
170
181
. 10.1016/j.compositesb.2016.10.018
8.
Chiu
,
Y. P.
,
1977
, “
On the Stress Field Due to Initial Strains in a Cuboid Surrounded by An Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
587
590
. 10.1115/1.3424140
9.
Chiu
,
Y. P.
,
1978
, “
On the Stress Field and Surface Deformation in a Half Space With a Cuboidal Zone in which Initial Strains are Uniform
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
302
306
. 10.1115/1.3424292
10.
Chiu
,
Y. P.
,
1980
, “
On the Internal Stresses in a Half Plane and a Layer Containing Localized Inelastic Strains Or Inclusions
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
313
318
. 10.1115/1.3153661
11.
Mura
,
T.
,
1997
, “
The Determination of the Elastic Field of a Polygonal Star Shaped Inclusion
,”
Mech. Res. Communicat.
,
24
(
5
), pp.
473
482
. 10.1016/S0093-6413(97)00052-9
12.
Lubarda
,
V.
, and
Markenscoff
,
X.
,
1998
, “
On the Absence of Eshelby Property for Non-Ellipsoidal Inclusions
,”
Int. J. Solids. Struct.
,
35
(
25
), pp.
3405
3411
. 10.1016/S0020-7683(98)00025-0
13.
Ru
,
C. Q.
,
1999
, “
Analytic Solution for Eshelby’s Problem of An Inclusion of Arbitrary Shape in a Plane or Half-Plane
,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
315
523
. 10.1115/1.2791051
14.
Rodin
,
G. J.
,
1996
, “
Eshelby’s Inclusion Problem for Polygons and Polyhedra
,”
J. Mech. Phys. Solids.
,
44
(
12
), pp.
1977
1995
. 10.1016/S0022-5096(96)00066-X
15.
Waldvogel
,
J.
,
1979
, “
The Newtonian Potential of Homogeneous Polyhedra
,”
Z. Angewandte Math. Phys. ZAMP
,
30
(
2
), pp.
388
398
. 10.1007/BF01601950
16.
Nozaki
,
H.
, and
Taya
,
M.
,
1997
, “
Elastic Fields in a Polygon-Shaped Inclusion With Uniform Eigenstrains
,”
ASME J. Appl. Mech.
,
64
(
3
), pp.
495
502
. 10.1115/1.2788920
17.
Nozaki
,
H.
, and
Taya
,
M.
,
2000
, “
Elastic Fields in a Polyhedral Inclusion With Uniform Eigenstrains and Related Problems
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
441
452
. 10.1115/1.1362670
18.
Trotta
,
S.
,
Zuccaro
,
G.
,
Sessa
,
S.
,
Marmo
,
F.
, and
Rosati
,
L.
,
2018
, “
On the Evaluation of the Eshelby Tensor for Polyhedral Inclusions of Arbitrary Shape
,”
Composit. Part B: Eng.
,
144
, pp.
267
281
. 10.1016/j.compositesb.2018.01.012
19.
Xu
,
B.
, and
Wang
,
M.
,
2005
, “
Special Properties of Eshelby Tensor for a Regular Polygonal Inclusion
,”
Acta. Mech. Sin.
,
21
(
3
), pp.
267
271
. 10.1007/s10409-005-0034-x
20.
Zou
,
W.
,
He
,
Q.
,
Huang
,
M.
, and
Zheng
,
Q.
,
2010
, “
Eshelby’s Problem of Non-Elliptical Inclusions
,”
J. Mech. Phys. Solids.
,
58
(
3
), pp.
346
372
. 10.1016/j.jmps.2009.11.008
21.
Kawashita
,
M.
, and
Nozaki
,
H.
,
2001
, “
Eshelby Tensor of a Polygonal Inclusion and Its Special Properties
,”
J. Elasticity
,
64
(
1
), pp.
71
84
. 10.1023/A:1014880629679
22.
Liu
,
M.
, and
Gao
,
X.-L.
,
2013
, “
Strain Gradient Solution for the Eshelby-Type Polygonal Inclusion Problem
,”
Int. J. Solids. Struct.
,
50
(
2
), pp.
328
338
. 10.1016/j.ijsolstr.2012.09.010
23.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/interface Energies
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
663
671
. 10.1115/1.1781177
24.
Moschovidis
,
Z. A.
, and
Mura
,
T.
,
1975
, “
Two-Ellipsoidal Inhomogeneities by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
42
(
4
), pp.
847
852
. 10.1115/1.3423718
25.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
, 2nd ed.,
Springer Netherlands
,
Dordrecht
.
26.
Nakasone
,
Y.
,
Nishiyama
,
H.
, and
Nojiri
,
T.
,
2000
, “
Numerical Equivalent Inclusion Method: a New Computational Method for Analyzing Stress Fields in and Around Inclusions of Various Shapes
,”
Mater. Sci. Eng. A.
,
285
(
1–2
), pp.
229
238
. 10.1016/S0921-5093(00)00637-7
27.
Zhou
,
Q.
,
Jin
,
X.
,
Wang
,
Z.
,
Wang
,
J.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2014
, “
Numerical Implementation of the Equivalent Inclusion Method for 2D Arbitrarily Shaped Inhomogeneities
,”
J. Elasticity
,
118
(
1
), pp.
39
61
. 10.1007/s10659-014-9477-2
28.
Toupin
,
R.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Rational Mech. Anal.
,
11
, pp.
385
414
. 10.1007/BF00253945
29.
Mindlin
,
R.
, and
Eshel
,
N.
,
1968
, “
On First-Gradient Theories in Linear Elasticity
,”
Int. J. Solid Struct.
,
4
, pp.
109
124
. 10.1016/0020-7683(68)90036-X
30.
Delfani
,
M. R.
, and
Shahandashti
,
M. L.
,
2017
, “
Elastic Field of a Spherical Inclusion With Non-Uniform Eigenfields in Second Strain Gradient Elasticity
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2205
), p.
20170254
.
31.
Delfani
,
M.
, and
Sajedipour
,
M.
,
2018
, “
Spherical Inclusion With Time-Harmonic Eigenfields in Strain Gradient Elasticity Considering the Effect of Micro Inertia
,”
Int. J. Solids. Struct.
,
155
, pp.
57
64
. 10.1016/j.ijsolstr.2018.07.008
32.
Sharma
,
P.
,
2004
, “
Size-Dependent Elastic Fields of Embedded Inclusions in Isotropic Chiral Solids
,”
Int. J. Solids. Struct.
,
41
(
22–23
), pp.
6317
6333
. 10.1016/j.ijsolstr.2004.05.004
33.
Zhang
,
X.
, and
Sharma
,
P.
,
2005
, “
Inclusions and Inhomogeneities in Strain Gradient Elasticity With Couple Stresses and Related Problems
,”
Int. J. Solids. Struct.
,
42
(
13
), pp.
3833
3851
. 10.1016/j.ijsolstr.2004.12.005
34.
Yin
,
H.
, and
Zhao
,
Y.
,
2016
,
Introduction to the Micromechanics of Composite Materials
, 1st ed.,
CRC Press Inc.
,
Boca Raton, FL
.
35.
Song
,
G.
,
Wang
,
L.
,
Deng
,
L.
, and
Yin
,
H.
,
2015
, “
Mechanical Characterization and Inclusion Based Boundary Element Modeling of Lightweight Concrete Containing Foam Particles
,”
Mech. Mater.
,
91
, pp.
208
225
. 10.1016/j.mechmat.2015.07.014
36.
Song
,
G.
, and
Yin
,
H. M.
,
2018
, “
Stress Concentration of One Microvoid Embedded in An Adhesive Layer Under Harmonic Load
,”
J. Eng. Mech.
,
144
(
3
), p.
04018002
. 10.1061/(ASCE)EM.1943-7889.0001416
37.
Wu
,
C.
, and
Yin
,
H.
,
2021
, “
The Inclusion-Based Boundary Element Method (iBEM) for Virtual Experiments of Elastic Composites
,”
Eng. Anal. Boundary Elements
,
124
, pp.
245
258
. 10.1016/j.enganabound.2020.12.020
You do not currently have access to this content.