Abstract

A statistical linearization approach is proposed for determining the response of the single-degree-of-freedom of the classical Bouc–Wen hysteretic system subjected to excitation both with harmonic and stochastic components. The method is based on representing the system response as a combination of a harmonic and of a zero-mean stochastic component. Specifically, first, the equation of motion is decomposed into a set of two coupled non-linear differential equations in terms of the unknown deterministic and stochastic response components. Next, the harmonic balance method and the statistical linearization method are used for the determination of the Fourier coefficients of the deterministic component, and the variance of the stochastic component, respectively. This yields a set of coupled algebraic equations which can be solved by any of the standard apropos algorithms. Pertinent numerical examples demonstrate the applicability, and reliability of the proposed method.

References

References
1.
Booton
,
R. C.
,
1954
, “
The Analysis of Nonlinear Control Systems With Random Inputs
,”
IRE Trans. Circurt Theory
,
1
(
1
), pp.
9
18
. 10.1109/TCT.1954.6373354
2.
Caughey
,
T. K.
,
1962
, “
Equivalent Linearization Techniques
,”
J. Acoust. Soc. Am.
,
35
(
11
), pp.
1706
1711
. 10.1121/1.1918794
3.
Spanos
,
P. D.
,
1981
, “
Stochastic Linearization in Structural Dynamics
,”
ASME Appl. Mech. Rev.
,
34
(
1
), pp.
1
8
.
4.
Spanos
,
P. D.
, and
Evangelatos
,
G. I.
,
2010
, “
Response of a Non-Linear System With Restoring Forces Governed by Fractional Derivatives–time Domain Simulation and Statistical Linearization Solution
,”
Soil Dyn. Earthquake Eng.
,
30
(
9
), pp.
811
821
. 10.1016/j.soildyn.2010.01.013
5.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2016
, “
Harmonic Wavelets Based Response Evolutionary Power Spectrum Determination of Linear and Non-linear Oscillators with Fractional Derivative Elements
,”
Int. J. Non-Linear Mech.
,
80
, pp.
66
75
. 10.1016/j.ijnonlinmec.2015.11.010
6.
Kong
,
F.
,
Kougioumtzoglou
,
I. A.
,
Spanos
,
P.
, and
Li
,
S.
,
2016
, “
Nonlinear System Response Evolutionary Power Spectral Density Determination Via a Harmonic Wavelets Based Galerkin Technique
,”
Int. J. Multi. Comput. Eng.
,
14
(
3
), pp.
1
18
.
7.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications, Inc.
,
Mineola, NY
.
8.
Crandall
,
S. H.
, and
Isaac
,
E.
,
2017
, “
Sixty Years of Stochastic Linearization Technique
,”
Meccanica
,
52
(
1–2
), pp.
299
305
. 10.1007/s11012-016-0399-x
9.
Hatchell
,
B. K.
,
Mauss
,
F. J.
,
Amaya
,
I. A.
,
Skorpik
,
J. R.
,
Silvers
,
K. L.
, and
Marotta
,
S. A.
,
2012
, “
Missile Captive Carry Monitoring and Helicopter Identification Using a Capacitive Microelectromechanical Systems Accelerometer
,”
Struct. Health. Monit.
,
11
(
2
), pp.
213
224
. 10.1177/1475921711414237
10.
Megerle
,
B.
,
2013
, “
Numerical and Experimental Investigation of the Aerodynamic Excitation of a Model Low-pressure Steam Turbine Stage Operating Under Low Volume Flow
,”
J. Eng. Gas Turbines Power
,
135
(
1
), p.
012602
. 10.1115/1.4007334
11.
Harne
,
R. L.
, and
Dai
,
Q.
,
2017
, “
Characterizing the Robustness and Susceptibility of Steady-state Dynamics in Post-Buckled Structures to Stochastic Perturbations
,”
J. Sound. Vib.
,
395
, pp.
258
271
. 10.1016/j.jsv.2017.02.006
12.
Dai
,
Q.
, and
Harne
,
R. L.
,
2018
, “
Investigation of Direct Current Power Delivery From Nonlinear Vibration Energy Harvesters Under Combined Harmonic and Stochastic Excitations
,”
J. Intel. Mater. Syst. Struct.
,
29
(
4
), pp.
514
529
. 10.1177/1045389X17711788
13.
Ellermann
,
K.
,
2005
, “
On the Determination of Nonlinear Response Distributions for Oscillators With Combined Harmonic and Random Excitation
,”
Nonlinear Dyn.
,
42
(
3
), pp.
305
318
. 10.1007/s11071-005-5457-1
14.
Budgor
,
A. B.
,
1977
, “
Studies in Nonlinear Stochastic Processes. Iii. Approximate Solutions of Nonlinear Stochastic Differential Equations Excited by Gaussian Noise and Harmonic Disturbances
,”
J. Stat. Phys.
,
17
(
1
), pp.
21
44
. 10.1007/BF01089375
15.
Bulsara
,
A. R.
,
Lindenberg
,
K.
, and
Shuler
,
K. E.
,
1982
, “
Spectral Analysis of a Nonlinear Oscillator Driven by Random and Periodic Forces. I. Linearized Theory
,”
J. Stat. Phys.
,
27
(
4
), pp.
787
808
. 10.1007/BF01013448
16.
Nayfeh
,
A.
, and
Serhan
,
S.
,
1990
, “
Response Statistics of Non-Linear Systems to Combined Deterministic and Random Excitations
,”
Int. J. Non-Linear Mech.
,
25
(
5
), pp.
493
509
. 10.1016/0020-7462(90)90014-Z
17.
Rong
,
H.
,
Wang
,
X.
,
Xu
,
W.
, and
Fang
,
T.
,
2010
, “
Resonant Response of a Non-Linear Vibro-impact System to Combined Deterministic Harmonic and Random Excitations
,”
Int. J. Non-linear Mech.
,
45
(
5
), pp.
474
481
. 10.1016/j.ijnonlinmec.2010.01.005
18.
Manohar
,
C. S.
, and
Iyengar
,
R. N.
,
1991
, “
Entrainment in Van Der Pol’s Oscillator in the Presence of Noise
,”
Int. J. Non-linear Mech.
,
26
(
5
), pp.
679
686
. 10.1016/0020-7462(91)90019-P
19.
Haiwu
,
R.
,
Wei
,
X.
,
Guang
,
M.
, and
Tong
,
F.
,
2001
, “
Response of a Duffing Oscillator to Combined Deterministic Harmonic and Random Excitation
,”
J. Sound. Vib.
,
242
(
2
), pp.
362
368
. 10.1006/jsvi.2000.3329
20.
Anh
,
N. D.
, and
Hieu
,
N. N.
,
2012
, “
The Duffing Oscillator Under Combined Periodic and Random Excitations
,”
Probab. Eng. Mech.
,
30
, pp.
27
36
. 10.1016/j.probengmech.2012.02.004
21.
Iyengar
,
R. N.
,
1986
, “
A Nonlinear System Under Combined Periodic and Random Excitation
,”
J. Stat. Phys.
,
44
(
5–6
), pp.
907
920
. 10.1007/BF01011913
22.
Zhu
,
H.
, and
Guo
,
S.
,
2015
, “
Periodic Response of a Duffing Oscillator Under Combined Harmonic and Random Excitations
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041015
. 10.1115/1.4029993
23.
Spanos
,
P. D.
,
Zhang
,
Y.
, and
Kong
,
F.
,
2019
, “
Formulation of Statistical Linearization for M-d-o-f Systems Subject to Combined Periodic and Stochastic Excitations
,”
ASME J. Appl. Mech.
,
86
(
10
), p.
101003
. 10.1115/1.4044087
24.
Spanos
,
P. D.
, and
Malara
,
G.
,
2020
, “
Nonlinear Vibrations of Beams and Plates With Fractional Derivative Elements Subject to Combined Harmonic and Random Excitations
,”
Probab. Eng. Mech.
,
59
, p.
103043
. 10.1016/j.probengmech.2020.103043
25.
Anh
,
N. D.
,
Zakovorotny
,
V. L.
, and
Hao
,
D. N.
,
2014
, “
Response Analysis of Van Der Pol Oscillator Subjected to Harmonic and Random Excitations
,”
Probab. Eng. Mech.
,
37
, pp.
51
59
. 10.1016/j.probengmech.2014.05.001
26.
Zhu
,
W. Q.
, and
Wu
,
Y. J.
,
2003
, “
First-Passage Time of Duffing Oscillator Under Combined Harmonic and White-Noise Excitations
,”
Nonlinear Dyn.
,
32
(
3
), pp.
291
305
. 10.1023/A:1024414020813
27.
Wu
,
Y. J.
, and
Zhu
,
W. Q.
,
2008
, “
Stochastic Averaging of Strongly Nonlinear Oscillators Under Combined Harmonic and Wide-Band Noise Excitations
,”
ASME J. Vib. Acoust.
,
130
(
5
), p.
051004
. 10.1115/1.2948382
28.
Chen
,
L.
, and
Zhu
,
W. Q.
,
2009
, “
Stochastic Averaging of Strongly Nonlinear Oscillators with Small Fractional Derivative Damping Under Combined Harmonic and White Noise Excitations
,”
Nonlinear Dyn.
,
56
(
3
), pp.
231
241
. 10.1007/s11071-008-9395-6
29.
Huang
,
Z. L.
,
Zhu
,
W. Q.
, and
Suzuki
,
Y.
,
2000
, “
Stochastic Averaging of Strongly Non-Linear Oscillators Under Combined Harmonic and White-Noise Excitations
,”
J. Sound. Vib.
,
238
(
2
), pp.
233
256
. 10.1006/jsvi.2000.3083
30.
Cai
,
G. O.
, and
Lin
,
Y. K.
,
1994
, “
Nonlinearly Damped Systems Under Simultaneous Broad-band and Harmonic Excitations
,”
Nonlinear Dyn.
,
6
(
2
), pp.
163
177
. 10.1007/BF00044983
31.
Yu
,
J. S.
, and
Lin
,
Y. K.
,
2004
, “
Numerical Path Integration of a Non-Homogeneous Markov Process
,”
Int. J. Non-linear Mech.
,
39
(
9
), pp.
1493
1500
. 10.1016/j.ijnonlinmec.2004.02.011
32.
Narayanan
,
S.
, and
Kumar
,
P.
,
2012
, “
Numerical Solutions of Fokker–Planck Equation of Nonlinear Systems Subjected to Random and Harmonic Excitations
,”
Probab. Eng. Mech.
,
27
(
1
), pp.
35
46
. 10.1016/j.probengmech.2011.05.006
33.
Xie
,
W.
,
Xu
,
W.
, and
Cai
,
L.
,
2005
, “
Path Integration of the Duffing-Rayleigh Oscillator Subject to Harmonic and Stochastic Excitations
,”
Appl. Math. Comput.
,
171
(
2
), pp.
870
884
.
34.
Xu
,
W.
,
He
,
Q.
,
Fang
,
T.
, and
Rong
,
H.
,
2004
, “
Stochastic Bifurcation in Duffing System Subject to Harmonic Excitation and in Presence of Random Noise
,”
Int. J. Non-linear Mech.
,
39
(
9
), pp.
1473
1479
. 10.1016/j.ijnonlinmec.2004.02.009
35.
Han
,
Q.
,
Xu
,
W.
, and
Sun
,
J.
,
2016
, “
Stochastic Response and Bifurcation of Periodically Driven Nonlinear Oscillators by the Generalized Cell Mapping Method
,”
Phys. A-Stat. Mech. Appl.
,
458
, pp.
115
125
. 10.1016/j.physa.2016.04.006
36.
Suzuki
,
Y.
, and
Minai
,
R.
,
1988
, “
Application of Stochastic Differential Equations to Seismic Reliability Analysis of Hysteretic Structures
,”
Probab. Eng. Mech.
,
3
(
1
), pp.
43
52
. 10.1016/0266-8920(88)90007-0
37.
Wen
,
Y. K.
,
1980
, “
Equivalent Linearization for Hysteretic Systems Under Random Excitation
,”
ASME J. Appl. Mech.
,
47
(
1
), pp.
150
154
. 10.1115/1.3153594
This content is only available via PDF.
You do not currently have access to this content.