Abstract
A statistical linearization approach is proposed for determining the response of the single-degree-of-freedom of the classical Bouc–Wen hysteretic system subjected to excitation both with harmonic and stochastic components. The method is based on representing the system response as a combination of a harmonic and of a zero-mean stochastic component. Specifically, first, the equation of motion is decomposed into a set of two coupled non-linear differential equations in terms of the unknown deterministic and stochastic response components. Next, the harmonic balance method and the statistical linearization method are used for the determination of the Fourier coefficients of the deterministic component, and the variance of the stochastic component, respectively. This yields a set of coupled algebraic equations which can be solved by any of the standard apropos algorithms. Pertinent numerical examples demonstrate the applicability, and reliability of the proposed method.