Abstract

Using deep learning to analyze mechanical stress distributions is gaining interest with the demand for fast stress analysis. Deep learning approaches have achieved excellent outcomes when utilized to speed up stress computation and learn the physical nature without prior knowledge of underlying equations. However, most studies restrict the variation of geometry or boundary conditions, making it difficult to generalize the methods to unseen configurations. We propose a conditional generative adversarial network (cGAN) model called StressGAN for predicting 2D von Mises stress distributions in solid structures. The StressGAN model learns to generate stress distributions conditioned by geometries, loads, and boundary conditions through a two-player minimax game between two neural networks with no prior knowledge. By evaluating the generative network on two stress distribution datasets under multiple metrics, we demonstrate that our model can predict more accurate stress distributions than a baseline convolutional neural-network model, given various and complex cases of geometries, loads, and boundary conditions.

References

1.
Yang
,
R.
, and
Chen
,
C.
,
1996
, “
Stress-Based Topology Optimization
,”
Struct. Optim.
,
12
(
2–3
), pp.
98
105
. 10.1007/BF01196941
2.
Wang
,
D.
,
Lee
,
J.
,
Holland
,
K.
,
Bibby
,
T.
,
Beaudoin
,
S.
, and
Cale
,
T.
,
1997
, “
Von Mises Stress in Chemical–Mechanical Polishing Processes
,”
J. Electrochem. Soc.
,
144
(
3
), pp.
1121
1127
. 10.1149/1.1837542
3.
Chen
,
J.
,
Akyuz
,
U.
,
Xu
,
L.
, and
Pidaparti
,
R.
,
1998
, “
Stress Analysis of the Human Temporomandibular Joint
,”
Med. Eng. Phys.
,
20
(
8
), pp.
565
572
. 10.1016/S1350-4533(98)00070-8
4.
Segerlind
,
L. J.
,
1976
,
Applied Finite Element Analysis
, Vol.
316
,
Wiley
,
New York
.
5.
Cook
,
R. D.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
John Wiley & Sons
,
New York
.
6.
Nie
,
Z.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2019
, “
Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011002
. 10.1115/1.4044097
7.
Mises
,
R. v.
,
1913
, “
Mechanik der festen körper im plastisch- deformablen zustand
,”
Nachr. von der Gesellschaft der Wissenschaften zu Göttingen, Math. Phys. Klasse
,
1913
, pp.
582
592
.
8.
Sinclair
,
G. B.
,
Beisheim
,
J. R.
, and
Kardak
,
A. A.
,
2018
, “
On the Detection of Stress Singularities in Finite Element Analysis
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
021005
. 10.1115/1.4041766
9.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), p.
436
. 10.1038/nature14539
10.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Deep Learning Approach to Estimate Stress Distribution: A Fast and Accurate Surrogate of Finite-Element Analysis
,”
J. R. Soc. Interface
,
15
(
138
), p.
20170844
. 10.1098/rsif.2017.0844
11.
Nourbakhsh
,
M.
,
Irizarry
,
J.
, and
Haymaker
,
J.
,
2018
, “
Generalizable Surrogate Model Features to Approximate Stress in 3d Trusses
,”
Eng. Appl. Artif. Intell.
,
71
(
1
), pp.
15
27
. 10.1016/j.engappai.2018.01.006
12.
Khadilkar
,
A.
,
Wang
,
J.
, and
Rai
,
R.
,
2019
, “
Deep Learning-Based Stress Prediction for Bottom-Up sla 3d Printing Process
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5
), pp.
1
15
. 10.1007/s00170-019-03363-4
13.
Mathew
,
J.
,
Moat
,
R.
,
Paddea
,
S.
,
Fitzpatrick
,
M. E.
, and
Bouchard
,
P.
,
2017
, “
Prediction of Residual Stresses in Girth Welded Pipes Using an Artificial Neural Network Approach
,”
Int. J. Pressure Vessels Piping
,
150
(
1
), pp.
89
95
. 10.1016/j.ijpvp.2017.01.002
14.
Khozani
,
Z. S.
,
Bonakdari
,
H.
, and
Zaji
,
A. H.
,
2017
, “
Estimating the Shear Stress Distribution in Circular Channels Based on the Randomized Neural Network Technique
,”
Appl. Soft Comput.
,
58
(
1
), pp.
441
448
. 10.1016/j.asoc.2017.05.024
15.
Feng
,
H.
, and
Prabhakar
,
P.
,
2020
, “
Difference-Based Deep Learning Framework for Stress Predictions in Heterogeneous Media
,”
preprint arXiv:2007.04898
.
16.
Isola
,
P.
,
Zhu
,
J.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2016
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
CoRR, abs/1611.07004
.
17.
Ledig
,
C.
,
Theis
,
L.
,
Huszár
,
F.
,
Caballero
,
J.
,
Cunningham
,
A.
,
Acosta
,
A.
,
Aitken
,
A.
,
Tejani
,
A.
,
Totz
,
J.
,
Wang
,
Z.
, and
Shi
,
W.
,
2017
, “
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
.
18.
Liu
,
M.-Y.
,
Breuel
,
T.
, and
Kautz
,
J.
, “
Unsupervised Image-to-Image Translation Networks
,”
the 31st International Conference on Neural Information Processing Systems (NIPS'17)
,
Red Hook, NY
,
Dec. 4–9
.
19.
Chrysos
,
G. G.
,
Kossaifi
,
J.
, and
Zafeiriou
,
S.
,
2020
, “
RoCGAN: Robust Conditional GAN
,”
International Journal of Computer Vision
,
128
(
10
), pp.
1573
1405
.
20.
Levin
,
R.
, and
Lieven
,
N.
,
1998
, “
Dynamic Finite Element Model Updating Using Neural Networks
,”
J. Sound Vib.
,
210
(
5
), pp.
593
607
. 10.1006/jsvi.1997.1364
21.
Atalla
,
M.
, and
Inman
,
D.
,
1998
, “
On Model Updating Using Neural Networks
,”
Mech. Syst. Signal Process.
,
12
(
1
), pp.
135
161
. 10.1006/mssp.1997.0138
22.
Spruegel
,
T.
,
Schröppel
,
T.
and
Wartzack
,
S.
,
2017
, “
Generic Approach to Plausibility Checks for Structural Mechanics With Deep Learning
,”
DS 87-1 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 1: Resource Sensitive Design, Design Research Applications and Case Studies
,
Vancouver, Canada
,
Aug. 21–25, 2017
, pp.
299
308
.
23.
Javadi
,
A. A.
,
Tan
,
T. P.
, and
Zhang
,
M.
,
2003
, “
Neural Network for Constitutive Modelling in Flnite Element Analysis
,”
Comput. Assist. Mech. Eng. Sci.
,
10
(
4
), pp.
523
529
.
24.
Oishi
,
A.
, and
Yagawa
,
G.
,
2017
, “
Computational Mechanics Enhanced by Deep Learning
,”
Comput. Methods Appl. Mech. Eng.
,
327
(
1
), pp.
327
351
. 10.1016/j.cma.2017.08.040
25.
Liu
,
X.
,
Tao
,
F.
,
Du
,
H.
,
Yu
,
W.
, and
Xu
,
K.
,
2020
, “
Learning Nonlinear Constitutive Laws Using Neural Network Models Based on Indirectly Measurable Data
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081003
. 10.1115/1.4047036
26.
Charles
,
R. Q.
,
Su
,
H.
,
Kaichun
,
M.
, and
Guibas
,
L. J.
,
2017
, “
Pointnet Deep Learning on Point Sets for 3d Classification and Segmentation
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
.
27.
Madani
,
A.
,
Bakhaty
,
A.
,
Kim
,
J.
,
Mubarak
,
Y.
, and
Mofrad
,
M.
,
2019
, “
Bridging Finite Element and Machine Learning Modeling: Stress Prediction of Arterial Walls in Atherosclerosis
,”
ASME J. Biomech. Eng.
,
141
(
8
), p.
084502
. 10.1115/1.4043290
28.
Yang
,
H.
,
Qiu
,
H.
,
Xiang
,
Q.
,
Tang
,
S.
, and
Guo
,
X.
,
2020
, “
Exploring Elastoplastic Constitutive Law of Microstructured Materials Through Artificial Neural Network: A Mechanistic-Based Data-Driven Approach
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091005
. 10.1115/1.4047208
29.
Wang
,
Y.
,
Oyen
,
D.
,
Mehta
,
A.
,
Scott
,
C. B.
,
Panda
,
N.
,
Fernández-Godino
,
M. G.
,
Srinivasan
,
G.
, and
Yue
,
X.
,
2020
, “
Stressnet: Deep Learning to Predict Stress With Fracture Propagation in Brittle Materials
,”
preprint arXiv:2011.10227
.
30.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
31.
Hu
,
J.
,
Shen
,
L.
, and
Sun
,
G.
,
2018
, “
Squeeze-and-Excitation Networks
,”
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
7132
7141
.
32.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
the 27th International Conference on Neural Information Processing Systems (NIPS'14)
,
Montreal, Canada
,
Dec. 8–13
, pp.
2672
2680
.
33.
Goodfellow
,
I.
,
2016
, “
Nips 2016 Tutorial: Generative Adversarial Networks
,”
preprint arXiv:1701.00160
.
34.
Radford
,
A.
,
Metz
,
L.
, and
Chintala
,
S.
,
2015
, “
Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks
,”
CoRR, abs/1511.06434
.
35.
Springenberg
,
J. T.
,
Dosovitskiy
,
A.
,
Brox
,
T.
, and
Riedmiller
,
M. A.
,
2014
, “
Striving for Simplicity: The All Convolutional Net
,”
CoRR, abs/1412.6806
.
36.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2020
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 46th Design Automation Conference (DAC).
,
Virtual, Online
,
Aug. 17–19
.
37.
Farimani
,
A. B.
,
Gomes
,
J.
,
Sharma
,
R.
,
Lee
,
F. L.
, and
Pande
,
V. S.
,
2018
, “
Deep Learning Phase Segregation
,”
CoRR, abs/1803.08993
.
38.
Farimani
,
A. B.
,
Gomes
,
J.
, and
Pande
,
V. S.
,
2017
, “
Deep Learning the Physics of Transport Phenomena
,”
CoRR, abs/1709.02432
.
39.
Lee
,
S.
, and
You
,
D.
,
2018
, “
Data-Driven Prediction of Unsteady Flow Fields Over a Circular Cylinder Using Deep Learning
,”
Journal of Fluid Mechanics
,
879
(
1
), pp.
217
254
.
40.
Paganini
,
M.
,
de Oliveira
,
L.
, and
Nachman
,
B.
,
2018
, “
Calogan: Simulating 3d High Energy Particle Showers in Multilayer Electromagnetic Calorimeters With Generative Adversarial Networks
,”
Phys. Rev. D
,
97
(
1
), p.
014021
. 10.1103/PhysRevD.97.014021
41.
Enomoto
,
K.
,
Sakurada
,
K.
,
Wang
,
W.
,
Fukui
,
H.
,
Matsuoka
,
M.
,
Nakamura
,
R.
, and
Kawaguchi
,
N.
,
2017
, “
Filmy Cloud Removal on Satellite Imagery With Multispectral Conditional Generative Adversarial Nets
,”
CoRR, abs/1710.04835
.
42.
Schawinski
,
K.
,
Zhang
,
C.
,
Zhang
,
H.
,
Fowler
,
L.
, and
Santhanam
,
G. K.
,
2017
, “
Generative Adversarial Networks Recover Features in Astrophysical Images of Galaxies Beyond the Deconvolution Limit
,”
Month. Notices R. Astron. Soc.: Lett.
,
467
(
1
), pp.
L110
L114
. 10.1093/mnrasl/slx008
43.
Ravanbakhsh
,
S.
,
Lanusse
,
F.
,
Mandelbaum
,
R.
,
Schneider
,
J.
, and
Poczos
,
B.
,
2017
, “
Enabling Dark Energy Science With Deep Generative Models of Galaxy Images
,”
the Thirty-First AAAI Conference on Artificial Intelligence (AAAI'17)
,
San Francisco, CA
,
Feb. 4–9
.
44.
Mustafa
,
M.
,
Bard
,
D.
,
Bhimji
,
W.
,
Lukić
,
Z.
,
Al-Rfou
,
R.
, and
Kratochvil
,
J.
,
2019
, “
CosmoGAN: Creating High-Fidelity Weak Lensing Convergence Maps Using Generative Adversarial Networks
,”
Computational Astrophysics and Cosmology
,
6
(
1
), pp.
1
13
.
45.
Ledig
,
C.
,
Theis
,
L.
,
Huszar
,
F.
,
Caballero
,
J.
,
Aitken
,
A. P.
,
Tejani
,
A.
,
Totz
,
J.
,
Wang
,
Z.
, and
Shi
,
W.
,
2016
, “
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
,”
CoRR, abs/1609.04802
.
46.
Gómez
,
J.
, and
Guarín-Zapata
,
N.
,
2018
,
SolidsPy: 2D-Finite Element Analysis with Python
.
47.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
CoRR, abs/1412.6980
.
You do not currently have access to this content.