Abstract

The characteristics of passive responses and fixed band gaps of phononic crystals (PnCs) limit their possible applications. For overcoming this shortcoming, a class of tunable PnCs comprised multiple scatterers and soft periodic porous elastomeric matrices are designed to manipulate the band structures and directionality of wave propagation through the applied deformation. During deformation, some tunable factors such as the coupling effect of scatterer and hole in the matrix, geometric and material nonlinearities, and the rearrangement of scatterer are activated by deformation to tune the dynamic responses of PnCs. The roles of these tunable factors in the manipulation of dynamic responses of PnCs are investigated in detail. The numerical results indicate that the tunability of the dynamic characteristic of PnCs is the result of the comprehensive function of these tunable factors mentioned earlier. The strong coupling effect between the hole in the matrix and the scatterer contributes to the formation of band gaps. The geometric nonlinearity of matrix and rearrangement of scatterer induced by deformation can simultaneously tune the band gaps and the directionality of wave propagation. However, the matrix’s material nonlinearity only adjusts the band gaps of PnCs and does not affect the directionality of wave propagation in them. The research extends our understanding of the formation mechanism of band gaps of PnCs and provides an excellent opportunity for the design of the optimized tunable PnCs and acoustic metamaterials (AMMs).

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
. 10.1115/1.4026911
2.
Ge
,
H.
,
Yang
,
M.
,
Ma
,
C.
,
Lu
,
M.-H.
,
Chen
,
Y.-F.
,
Fang
,
N.
, and
Sheng
,
P.
,
2018
, “
Breaking the Barriers: Advances in Acoustic Functional Materials
,”
Natl. Sci. Rev.
,
5
(
2
), pp.
159
182
. 10.1093/nsr/nwx154
3.
Luo
,
C.
,
Johnson
,
S. G.
,
Joannopoulos
,
J. D.
, and
Pendry
,
J. B.
,
2002
, “
All-Angle Negative Refraction Without Negative Effective Index
,”
Phys. Rev. B
,
65
(
20
), p.
201104
. 10.1103/PhysRevB.65.201104
4.
Qiu
,
C.
,
Zhang
,
X.
, and
Liu
,
Z.
,
2005
, “
Far-Field Imaging of Acoustic Waves by a Two-Dimensional Sonic Crystal
,”
Phys. Rev. B
,
71
(
5
), p.
054302
. 10.1103/PhysRevB.71.054302
5.
Chen
,
Z.-G.
,
Zhao
,
J.
,
Mei
,
J.
, and
Wu
,
Y.
,
2017
, “
Acoustic Frequency Filter Based on Anisotropic Topological Phononic Crystals
,”
Sci. Rep.
,
7
(
1
), p.
15005
. 10.1038/s41598-017-15409-2
6.
Page
,
J. H.
,
2016
, “
Focusing of Ultrasonic Waves by Negative Refraction in Phononic Crystals
,”
AIP Adv.
,
6
(
12
), p.
121606
. 10.1063/1.4972204
7.
Wang
,
Y.-F.
,
Wang
,
T.-T.
,
Liang
,
J.-W.
,
Wang
,
Y.-S.
, and
Laude
,
V.
,
2018
, “
Channeled Spectrum in the Transmission of Phononic Crystal Waveguides
,”
J. Sound Vib.
,
437
, pp.
410
421
. 10.1016/j.jsv.2018.09.030
8.
Dong
,
H.-W.
,
Zhao
,
S.-D.
,
Wang
,
Y.-S.
, and
Zhang
,
C.
,
2018
, “
Broadband Single-Phase Hyperbolic Elastic Metamaterials for Super-Resolution Imaging
,”
Sci. Rep.
,
8
(
1
), p.
2247
. 10.1038/s41598-018-20579-8
9.
Zhao
,
S.-D.
,
Chen
,
A.-L.
,
Wang
,
Y.-S.
, and
Zhang
,
C.
,
2018
, “
Continuously Tunable Acoustic Metasurface for Transmitted Wavefront Modulation
,”
Phys. Rev. Appl.
,
10
(
5
), p.
054066
. 10.1103/PhysRevApplied.10.054066
10.
Casadei
,
F.
,
Delpero
,
T.
,
Bergamini
,
A.
,
Ermanni
,
P.
, and
Ruzzene
,
M.
,
2012
, “
Piezoelectric Resonator Arrays for Tunable Acoustic Waveguides and Metamaterials
,”
J. Appl. Phys.
,
112
(
6
), p.
064902
. 10.1063/1.4752468
11.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Sound Transmission Loss of Metamaterial-Based Thin Plates With Multiple Subwavelength Arrays of Attached Resonators
,”
J. Sound Vib.
,
331
(
25
), pp.
5408
5423
. 10.1016/j.jsv.2012.07.016
12.
Casadei
,
F.
,
Beck
,
B. S.
,
Cunefare
,
K. A.
, and
Ruzzene
,
M.
,
2012
, “
Vibration Control of Plates Through Hybrid Configurations of Periodic Piezoelectric Shunts
,”
J. Intell. Mater. Syst. Struct.
,
23
(
10
), pp.
1169
1177
. 10.1177/1045389X12443014
13.
Yu
,
D.
,
Wen
,
J.
,
Zhao
,
H.
,
Liu
,
Y.
, and
Wen
,
X.
,
2008
, “
Vibration Reduction by Using the Idea of Phononic Crystals in a Pipe-Conveying Fluid
,”
J. Sound Vib.
,
318
(
1–2
), pp.
193
205
. 10.1016/j.jsv.2008.04.009
14.
Zhang
,
H.
,
Wen
,
J.
,
Xiao
,
Y.
,
Wang
,
G.
, and
Wen
,
X.
,
2015
, “
Sound Transmission Loss of Metamaterial Thin Plates With Periodic Subwavelength Arrays of Shunted Piezoelectric Patches
,”
J. Sound Vib.
,
343
, pp.
104
120
. 10.1016/j.jsv.2015.01.019
15.
Sun
,
Y.
,
Li
,
Z.
,
Huang
,
A.
, and
Li
,
Q.
,
2015
, “
Semi-Active Control of Piezoelectric Coatings Underwater Sound Absorption by Combining Design of the Shunt Impedances
,”
J. Sound Vib.
,
355
, pp.
19
38
. 10.1016/j.jsv.2015.06.036
16.
Wang
,
G.
,
Wang
,
J.
,
Chen
,
S.
, and
Wen
,
J.
,
2011
, “
Vibration Attenuations Induced by Periodic Arrays of Piezoelectric Patches Connected by Enhanced Resonant Shunting Circuits
,”
Smart Mater. Struct.
,
20
(
12
), p.
125019
.
17.
Huang
,
Z. G.
, and
Wu
,
T. T.
,
2005
, “
Temperature Effect on the Bandgaps of Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
3
), pp.
365
370
. 10.1109/TUFFC.2005.1417258
18.
Xia
,
B.
,
Chen
,
N.
,
Xie
,
L.
,
Qin
,
Y.
, and
Yu
,
D.
,
2016
, “
Temperature-Controlled Tunable Acoustic Metamaterial With Active Band Gap and Negative Bulk Modulus
,”
Appl. Acoust.
,
112
, pp.
1
9
. 10.1016/j.apacoust.2016.05.005
19.
Yao
,
Y.
,
Wu
,
F.
,
Zhang
,
X.
, and
Hou
,
Z.
,
2011
, “
Thermal Tuning of Lamb Wave Band Structure in a Two-Dimensional Phononic Crystal Plate
,”
J. Appl. Phys.
,
110
(
12
), p.
123503
. 10.1063/1.3669391
20.
Jim
,
K. L.
,
Leung
,
C. W.
,
Lau
,
S. T.
,
Choy
,
S. H.
, and
Chan
,
H. L. W.
,
2009
, “
Thermal Tuning of Phononic Bandstructure in Ferroelectric Ceramic/Epoxy Phononic Crystal
,”
Appl. Phys. Lett.
,
94
(
19
), p.
193501
. 10.1063/1.3136752
21.
Vasseur
,
J. O.
,
Matar
,
O. B.
,
Robillard
,
J. F.
,
Hladky-Hennion
,
A.-C.
, and
Deymier
,
P. A.
,
2011
, “
Band Structures Tunability of Bulk 2D Phononic Crystals Made of Magneto-Elastic Materials
,”
AIP Adv.
,
1
(
4
), p.
041904
. 10.1063/1.3676172
22.
Bou Matar
,
O.
,
Robillard
,
J. F.
,
Vasseur
,
J. O.
,
Hladky-Hennion
,
A.-C.
,
Deymier
,
P. A.
,
Pernod
,
P.
, and
Preobrazhensky
,
V.
,
2012
, “
Band Gap Tunability of Magneto-Elastic Phononic Crystal
,”
J. Appl. Phys.
,
111
(
5
), p.
054901
. 10.1063/1.3687928
23.
Zhang
,
S.
,
Shi
,
Y.
, and
Gao
,
Y.
,
2017
, “
Tunability of Band Structures in a Two-Dimensional Magnetostrictive Phononic Crystal Plate With Stress and Magnetic Loadings
,”
Phys. Lett. Sect. A Gen. At. Solid State Phys.
,
381
(
12
), pp.
1055
1066
. 10.1016/j.physleta.2017.01.044
24.
Zhang
,
S.
, and
Gao
,
Y.
,
2019
, “
Tunability of Hysteresis-Dependent Band Gaps in a Two-Dimensional Magneto-Elastic Phononic Crystal Using Magnetic and Stress Loadings
,”
Appl. Phys. Express
,
12
(
2
), p.
027001
. 10.7567/1882-0786/aafa02
25.
Ding
,
R.
,
Su
,
X.
,
Zhang
,
J.
, and
Gao
,
Y.
,
2014
, “
Tunability of Longitudinal Wave Band Gaps in One Dimensional Phononic Crystal With Magnetostrictive Material
,”
J. Appl. Phys.
,
115
(
7
), p.
074104
. 10.1063/1.4866364
26.
Zhang
,
S.
, and
Gao
,
Y.
,
2018
, “
Gap Evolution of Lamb Wave Propagation in Magneto-Elastic Phononic Plates With Pillars and Holes by Modulating Magnetic Field and Stress Loadings
,”
J. Appl. Phys.
,
124
(
24
), p.
244102
. 10.1063/1.5040768
27.
Wu
,
B.
,
Zhou
,
W.
,
Bao
,
R.
, and
Chen
,
W.
,
2018
, “
Tuning Elastic Waves in Soft Phononic Crystal Cylinders Via Large Deformation and Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031004
. 10.1115/1.4038770
28.
Xu
,
J.
, and
Tang
,
J.
,
2017
, “
Tunable Prism Based on Piezoelectric Metamaterial for Acoustic Beam Steering
,”
Appl. Phys. Lett.
,
110
(
18
), p.
181902
. 10.1063/1.4982717
29.
Gao
,
N.
,
Li
,
J.
,
Bao
,
R.
, and
Chen
,
W.
,
2019
, “
Harnessing Uniaxial Tension to Tune Poisson’s Ratio and Wave Propagation in Soft Porous Phononic Crystals: An Experimental Study
,”
Soft Matter
,
15
(
14
), pp.
2921
2927
. 10.1039/C8SM02468E
30.
Nguyen
,
B. H.
,
Zhuang
,
X.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2019
, “
Tunable Topological Bandgaps and Frequencies in a Pre-Stressed Soft Phononic Crystal
,”
J. Appl. Phys.
,
125
(
9
), p.
095106
. 10.1063/1.5066088
31.
Ning
,
S.
,
Yang
,
F.
,
Luo
,
C.
,
Liu
,
Z.
, and
Zhuang
,
Z.
,
2020
, “
Low-Frequency Tunable Locally Resonant Band Gaps in Acoustic Metamaterials Through Large Deformation
,”
Extrem. Mech. Lett.
,
35
, p.
100623
. 10.1016/j.eml.2019.100623
32.
Shim
,
J.
,
Wang
,
P.
, and
Bertoldi
,
K.
,
2015
, “
Harnessing Instability-Induced Pattern Transformation to Design Tunable Phononic Crystals
,”
Int. J. Solids Struct.
,
58
, pp.
52
61
. 10.1016/j.ijsolstr.2014.12.018
33.
Li
,
J.
,
Slesarenko
,
V.
, and
Rudykh
,
S.
,
2018
, “
Auxetic Multiphase Soft Composite Material Design Through Instabilities With Application for Acoustic Metamaterials
,”
Soft Matter
,
14
(
30
), pp.
6171
6180
. 10.1039/C8SM00874D
34.
Zhou
,
W.
,
Wu
,
B.
,
Muhammad
,
Du
,
Q.
,
Huang
,
G.
,
,
C.
, and
Chen
,
W.
,
2018
, “
Actively Tunable Transverse Waves in Soft Membrane-Type Acoustic Metamaterials
,”
J. Appl. Phys.
,
123
(
16
), p.
165304
. 10.1063/1.5015979
35.
Wang
,
P.
,
Shim
,
J.
, and
Bertoldi
,
K.
,
2013
, “
Effects of Geometric and Material Nonlinearities on Tunable Band Gaps and Low-Frequency Directionality of Phononic Crystals
,”
Phys. Rev. B
,
88
(
1
), p.
014304
. 10.1103/PhysRevB.88.014304
36.
Shan
,
S.
,
Kang
,
S. H.
,
Wang
,
P.
,
Qu
,
C.
,
Shian
,
S.
,
Chen
,
E. R.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves
,”
Adv. Funct. Mater.
,
24
(
31
), pp.
4935
4942
. 10.1002/adfm.201400665
37.
Li
,
J.
,
Wang
,
Y.
,
Chen
,
W.
,
Wang
,
Y.-S.
, and
Bao
,
R.
,
2019
, “
Harnessing Inclusions to Tune Post-Buckling Deformation and Bandgaps of Soft Porous Periodic Structures
,”
J. Sound Vib.
,
459
, p.
114848
. 10.1016/j.jsv.2019.114848
38.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations
,”
Phys. Rev. B
,
78
(
18
), p.
184107
. 10.1103/PhysRevB.78.184107
39.
Zhong
,
L.
,
Wu
,
F.
,
Zhang
,
X.
,
Zhong
,
H.
, and
Zhong
,
S.
,
2005
, “
Effects of Orientation and Symmetry of Rods on the Complete Acoustic Band Gap in Two-Dimensional Periodic Solid/Gas Systems
,”
Phys. Lett. Sect. A Gen. At. Solid State Phys.
,
339
(
1–2
), pp.
164
170
. 10.1016/j.physleta.2005.03.025
40.
Dong
,
H.
,
Wu
,
F.
,
Zhong
,
H.
,
Zhang
,
X.
, and
Yao
,
Y.
,
2010
, “
Effects of Asymmetrical Rotated Rectangular Basis on the Acoustic Band Gap in Two-Dimensional Acoustic Crystals: The Bands Are Twisted
,”
J. Phys. D. Appl. Phys.
,
43
(
10
), p.
105404
. 10.1088/0022-3727/43/10/105404
41.
Wu
,
L. Y.
, and
Chen
,
L. W.
,
2007
, “
The Dispersion Characteristics of Sonic Crystals Consisting of Elliptic Cylinders
,”
J. Phys. D. Appl. Phys.
,
40
(
23
), pp.
7579
7583
. 10.1088/0022-3727/40/23/051
42.
Wu
,
F.
,
Liu
,
Z.
, and
Liu
,
Y.
,
2002
, “
Acoustic Band Gaps Created by Rotating Square Rods in a Two-Dimensional Lattice
,”
Phys. Rev. E
,
66
(
4
), p.
046628
. 10.1103/PhysRevE.66.046628
43.
Goffaux
,
C.
, and
Vigneron
,
J. P.
,
2001
, “
Theoretical Study of a Tunable Phononic Band Gap System
,”
Phys. Rev. B
,
64
(
7
), p.
075118
. 10.1103/PhysRevB.64.075118
44.
Lee
,
J.-H.
,
Wang
,
L.
,
Boyce
,
M. C.
, and
Thomas
,
E. L.
,
2012
, “
Periodic Bicontinuous Composites for High Specific Energy Absorption
,”
Nano Lett.
,
12
(
8
), pp.
4392
4396
. 10.1021/nl302234f
45.
Maldovan
,
M.
,
2013
, “
Sound and Heat Revolutions in Phononics
,”
Nature
,
503
(
7475
), pp.
209
217
. 10.1038/nature12608
46.
Maldovan
,
M.
,
2013
, “
Narrow Low-Frequency Spectrum and Heat Management by Thermocrystals
,”
Phys. Rev. Lett.
,
110
(
2
), p.
025902
. 10.1103/PhysRevLett.110.025902
47.
Liu
,
Y.
,
Su
,
J.-Y.
,
Xu
,
Y.-L.
, and
Zhang
,
X.-C.
,
2009
, “
The Influence of Pore Shapes on the Band Structures in Phononic Crystals With Periodic Distributed Void Pores
,”
Ultrasonics
,
49
(
2
), pp.
276
280
. 10.1016/j.ultras.2008.09.008
48.
Ning
,
S.
,
Luo
,
C.
,
Yang
,
F.
,
Liu
,
Z.
, and
Zhuang
,
Z.
,
2020
, “
Mechanically Tunable Solid/Solid Phononic Crystals Through the Rearrangement of Hard Scatterers Controlled by the Deformation of Periodic Elastomeric Matrixes
,”
ASME J. Appl. Mech.
,
87
(
10
), p.
101002
. 10.1115/1.4047365
49.
Michel
,
J. C.
,
Lopez-Pamies
,
O.
,
Ponte Castañeda
,
P.
, and
Triantafyllidis
,
N.
,
2007
, “
Microscopic and Macroscopic Instabilities in Finitely Strained Porous Elastomers
,”
J. Mech. Phys. Solids
,
55
(
5
), pp.
900
938
. 10.1016/j.jmps.2006.11.006
50.
Bertoldi
,
K.
,
Boyce
,
M. C.
,
Deschanel
,
S.
,
Prange
,
S. M.
, and
Mullin
,
T.
,
2008
, “
Mechanics of Deformation-Triggered Pattern Transformations and Superelastic Behavior in Periodic Elastomeric Structures
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2642
2668
. 10.1016/j.jmps.2008.03.006
51.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
,
2003
, “
Wave Beaming Effects in Two-Dimensional Cellular Structures
,”
Smart Mater. Struct.
,
12
(
3
), pp.
363
372
. 10.1088/0964-1726/12/3/307
52.
Casadei
,
F.
, and
Rimoli
,
J. J.
,
2013
, “
Anisotropy-Induced Broadband Stress Wave Steering in Periodic Lattices
,”
Int. J. Solids Struct.
,
50
(
9
), pp.
1402
1414
. 10.1016/j.ijsolstr.2013.01.015
53.
Trainiti
,
G.
,
Rimoli
,
J. J.
, and
Ruzzene
,
M.
,
2016
, “
Wave Propagation in Undulated Structural Lattices
,”
Int. J. Solids Struct.
,
97–98
, pp.
431
444
. 10.1016/j.ijsolstr.2016.07.006
54.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
. 10.5254/1.3538357
55.
Krushynska
,
A. O.
,
Kouznetsova
,
V. G.
, and
Geers
,
M. G. D.
,
2016
, “
Visco-Elastic Effects on Wave Dispersion in Three-Phase Acoustic Metamaterials
,”
J. Mech. Phys. Solids
,
96
, pp.
29
47
. 10.1016/j.jmps.2016.07.001
56.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2013
, “
Metadamping: An Emergent Phenomenon in Dissipative Metamaterials
,”
J. Sound Vib.
,
332
(
20
), pp.
4767
4774
. 10.1016/j.jsv.2013.04.041
57.
DePauw
,
D.
,
Al Ba’ba’a
,
H.
, and
Nouh
,
M.
,
2018
, “
Metadamping and Energy Dissipation Enhancement via Hybrid Phononic Resonators
,”
Extrem. Mech. Lett.
,
18
, pp.
36
44
. 10.1016/j.eml.2017.11.002
You do not currently have access to this content.