Abstract

This paper presents an analysis for the dynamic stability of sandwich beams/wide plates subjected to axial impulsive loads. The formulation and solution of the problem is done by use of the extended high-order sandwich panel theory (EHSAPT). With the initial geometric imperfection included, the equations of motion in terms of seven generalized displacements are derived. The dynamic response of sandwich panels subjected to three different types of impulsive loads, namely, step, linear decay, and triangular impulse, is studied. Furthermore, the effects of the oscillation mode number, face/core materials, and geometries are investigated. It is observed that all measurements of the dynamic response, such as the maximum displacements, strains, and stresses, change at the same rate as the change of the impulse load magnitude and duration, for a specific impulse load profile. When the impulse load is lower than the static buckling load, the dynamic response is bounded no matter how long the load is applied. A step impulsive axial load with magnitude lower than the static buckling load can lead a sandwich panel to have a dynamic response as high as twice the static response. When the impulse load is higher than the static critical load, the dynamic response is unbounded with increasing load duration. However, it is possible that the dynamic response can be controlled at a low level if the duration of the impulse load is short enough, and thus, in this case, the load can safely exceed the static critical load.

References

1.
Koning
,
C.
, and
Taub
,
J.
,
1933
, “
Impact Buckling of Thin Bars in the Elastic Range Hinged At Both Ends
,”
Luftfahrtforschung
,
10
(
2
), pp.
56
64
.
(translated as NACA TM 748 in 1934)
.
2.
Taub
,
J.
,
1933
, “
Impact Buckling of Thin Bars in the Elastic Range for Any End Condition
,”
Luftfahrtforschung
,
10
(
2
), pp.
65
85
.
(translated as NACA TM 749 in 1934)
.
3.
Simitses
,
G. J.
,
1990
,
Dynamic Stability of Suddenly Loaded Structures
,
Springer-Verlag
,
New York
.
4.
Abramovich
,
H.
,
2017
,
Stability and Vibrations of Thin Walled Composite Structures. Woodhead Publishing, ch. 6 – Dynamic Buckling of Composite Columns and Plates
, pp.
223
252
.
5.
Langthjem
,
M. A.
, and
Sugiyama
,
Y.
,
2000
, “
Dynamic Stability of Columns Subjected to Follower Loads: A Survey
,”
J. Sound. Vib.
,
238
(
5
), pp.
809
851
. 10.1006/jsvi.2000.3137
6.
Budiansky
,
B.
,
Hutchinson
,
J. W.
,
1996
, “Dynamic Buckling of Imperfection-Sensitive Structures,”
Proceedings of the Eleventh International Congress of Applied Mechanics, Munich
,
Görtler
,
H.
,
ed.
Springer Berlin Heidelberg
, pp.
636
651
.
7.
Volmi
,
S. A.
,
1972
,
Nonlinear Dynamics of Plates and Shells
,
Science
,
USSR, Moscow
.
8.
Sheinman
,
I.
,
1980
, “
Dynamic Large-Displacement Analysis of Curved Beams Involving Shear Deformation
,”
Int. J. Solids. Struct.
,
16
(
11
), pp.
1037
1049
. 10.1016/0020-7683(80)90103-1
9.
Hsu
,
C. S.
,
1967
, “
The Effects of Various Parameters on the Dynamic Stability of a Shallow Arch
,”
ASME J. Appl. Mech.
,
34
(
2
), pp.
349
358
. 10.1115/1.3607689
10.
Ari-Gur
,
J.
, and
Simonetta
,
S. R.
,
1997
, “
Dynamic Pulse Buckling of Rectangular Composite Plates
,”
Compos. Part B: Eng.
,
28
(
3
), pp.
301
308
. 10.1016/S1359-8368(96)00028-5
11.
Hutchinson
,
J. W.
, and
Budiansky
,
B.
,
1966
, “
Dynamic Buckling Estimates
,”
AIAA J.
,
4
(
3
), pp.
525
530
. 10.2514/3.3468
12.
Budiansky
,
B.
1967
, “Dynamic Buckling of Elastic Structures: Criteria and Estimates,”
Proceedings of the International Conference on Dynamic Stability of Structures
,
G.
Herrmann
,
ed.
Pergamon Press Inc.
,
New York
, pp.
83
106
.
13.
Kubiak
,
T.
,
2007
, “
Criteria of Dynamic Buckling Estimation of Thin-Walled Structures
,”
Thin-Walled Struct.
,
45
(
10
), pp.
888
892
. 10.1016/j.tws.2007.08.039
14.
Ru
,
C. Q.
,
2018
, “
A Simple Criterion for Finite Time Stability With Application to Impacted Buckling of Elastic Columns
,”
Appl. Math. Mech.
,
39
(
3
), pp.
305
316
. 10.1007/s10483-018-2311-9
15.
Lindberg
,
H. E.
,
1965
, “
Impact Buckling of a Thin Bar
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
315
322
. 10.1115/1.3625801
16.
Hayashi
,
T.
, and
Sano
,
Y.
,
1972
, “
Dynamic Buckling of Elastic Bars : 1st Report, the Case of Low Velocity Impact
,”
Bull. JSME
,
15
(
88
), pp.
1167
1175
. 10.1299/jsme1958.15.1167
17.
Hayashi
,
T.
, and
Sano
,
Y.
,
1972
, “
Dynamic Buckling of Elastic Bars: 2nd Report, the Case of High Velocity Impact
,”
Bull. JSME
,
15
(
88
), pp.
1176
1184
. 10.1299/jsme1958.15.1176
18.
Ari-Gur
,
J.
,
Weller
,
T.
, and
Singer
,
J.
,
1982
, “
Experimental and Theoretical Studies of Columns Under Axial Impact
,”
Int. J. Solids Struct.
,
18
(
7
), pp.
619
641
. 10.1016/0020-7683(82)90044-0
19.
Artem
,
H. S.
, and
Aydin
,
L.
,
2010
, “
Exact Solution and Dynamic Buckling Analysis of a Beam-Column System Having the Elliptic Type Loading
,”
Appl. Math. Mech.
,
31
(
10
), pp.
1317
1324
. 10.1007/s10483-010-1364-8
20.
Gao
,
K.
,
Gao
,
W.
,
Wu
,
D.
, and
Song
,
C.
,
2017
, “
Nonlinear Dynamic Stability Analysis of Euler-bernoulli Beam-Columns With Damping Effects Under Thermal Environment
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2423
2444
. 10.1007/s11071-017-3811-8
21.
Weller
,
T.
,
Abramovich
,
H.
, and
Yaffe
,
R.
,
1989
, “
Dynamic Buckling of Beams and Plates Subjected to Axial Impact
,”
Comput. Struct.
,
32
(
3–4
), pp.
835
851
. 10.1016/0045-7949(89)90368-4
22.
Petry
,
D.
, and
Fahlbusch
,
G.
,
2000
, “
Dynamic Buckling of Thin Isotropic Plates Subjected to in-Plane Impact
,”
Thin-Walled Struct.
,
38
(
3
), pp.
267
283
. 10.1016/S0263-8231(00)00037-9
23.
Hoff
,
N. J.
, and
Bruce
,
V. G.
,
1953
, “
Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches
,”
J. Math. Phys.
,
32
(
1–4
), pp.
276
288
. 10.1002/sapm1953321276
24.
Simitses
,
G. J.
, and
Sheinman
,
I.
,
1982
,
Dynamic Stability of Structures: Application to Frames, Cylindrical Shells and Other Systems. Technical report AFWAL-TR-81-3155
.
25.
Huyan
,
X.
, and
Simitses
,
G. J.
,
1997
, “
Dynamic Buckling of Imperfect Cylindrical Shells Under Axial Compression and Bending Moment
,”
AIAA J.
,
35
(
8
), pp.
1404
1412
. 10.2514/2.250
26.
Wei
,
Z. G.
,
Yu
,
J. L.
, and
Batra
,
R. C.
,
2005
, “
Dynamic Buckling of Thin Cylindrical Shells Under Axial Impact
,”
Int. J. Impact Eng.
,
32
(
1
), pp.
575
592
. 10.1016/j.ijimpeng.2005.07.008
27.
Davidson
,
J. F.
,
1953
, “
Buckling of Struts Under Dynamic Loading
,”
J. Mech. Phys. Solids
,
2
(
1
), pp.
54
66
. 10.1016/0022-5096(53)90027-1
28.
Kounadis
,
A. N.
, and
Economou
,
A. F.
,
1984
, “
The Effects of Initial Curvature and Other Parameters on the Nonlinear Buckling of Simple Frames
,”
J. Struct. Mech.
,
12
(
1
), pp.
27
42
. 10.1080/03601218408907461
29.
Gary
,
G.
,
1983
, “
Dynamic Buckling of An Elastoplastic Column
,”
Int. J. Impact Eng.
,
1
(
4
), pp.
357
375
. 10.1016/0734-743X(83)90029-5
30.
Touati
,
D.
, and
Cederbaum
,
G.
,
1994
, “
Dynamic Stability of Nonlinear Viscoelastic Plates
,”
Int. J. Solids. Struct.
,
31
(
17
), pp.
2367
2376
. 10.1016/0020-7683(94)90157-0
31.
Latifi
,
M.
,
Kharazi
,
M.
, and
Ovesy
,
H. R.
,
2018
, “
Nonlinear Dynamic Instability Analysis of Sandwich Beams With Integral Viscoelastic Core Using Different Criteria
,”
Compos. Struct.
,
191
, pp.
89
99
. 10.1016/j.compstruct.2018.02.032
32.
Kubiak
,
T.
,
2005
, “
Dynamic Buckling of Thin-walled Composite Plates With Varying Widthwise Material Properties
,”
Int. J. Solids. Struct.
,
42
(
20
), pp.
5555
5567
. 10.1016/j.ijsolstr.2005.02.043
33.
Bisagni
,
C.
,
2005
, “
Dynamic Buckling of Fiber Composite Shells Under Impulsive Axial Compression
,”
Thin-Walled Struct.
,
43
(
3
), pp.
499
514
. 10.1016/j.tws.2004.07.012
34.
Pradyumna
,
S.
, and
Bandyopadhyay
,
J. N.
,
2011
, “
Dynamic Instability Behavior of Laminated Hypar and Conoid Shells Using a Higher-order Shear Deformation Theory
,”
Thin-Walled Struct.
,
49
(
1
), pp.
77
84
. 10.1016/j.tws.2010.08.008
35.
Dey
,
T.
, and
Ramachandra
,
L. S.
,
2014
, “
Static and Dynamic Instability Analysis of Composite Cylindrical Shell Panels Subjected to Partial Edge Loading
,”
Int. J. Non-Linear Mech.
,
64
, pp.
46
56
. 10.1016/j.ijnonlinmec.2014.03.014
36.
Soltanieh
,
G.
,
Kabir
,
M. Z.
, and
Shariyat
,
M.
,
2019
, “
Improvement of the Dynamic Instability of Shallow Hybrid Composite Cylindrical Shells Under Impulse Loads Using Shape Memory Alloy Wires
,”
Compos. Part B: Eng.
,
167
, pp.
167
179
. 10.1016/j.compositesb.2018.12.040
37.
Adi Murthy
,
N. K.
, and
Alwar
,
R. S.
,
1976
, “
Nonlinear Dynamic Buckling of Sandwich Panels
,”
ASME J. Appl. Mech.
,
43
(
3
), pp.
459
463
. 10.1115/1.3423891
38.
Carrera
,
E.
, and
Brischetto
,
S.
,
2008
, “
A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates
,”
ASME Appl. Mech. Rev.
,
62
(
1
), p.
010803
. 10.1115/1.3013824
39.
Carlsson
,
L.
, and
Kardomateas
,
G.
,
2011
,
Structural and Failure Mechanics of Sandwich Composites
,
Springer
,
New York
.
40.
Kardomateas
,
G. A.
, and
Phan
,
C. N.
,
2011
, “
Three-Dimensional Elasticity Solution for Sandwich Beams/Wide Plates With Orthotropic Phases: The Negative Discriminant Case
,”
J. Sandwich Struct. Mater.
,
13
(
6
), pp.
641
661
. 10.1177/1099636211419127
41.
Yuan
,
Z.
,
Kardomateas
,
G. A.
, and
Frostig
,
Y.
,
2016
, “
Geometric Nonlinearity Effects in the Response of Sandwich Wide Panels
,”
ASME J. Appl. Mech.
,
83
(
9
), p.
091008
. 10.1115/1.4033651
42.
Raja Sekhar
,
B.
,
Gopalakrishnan
,
S.
, and
Murthy
,
M.
,
2017
, “
Wave Transmission Characteristics for Higher-order Sandwich Panel With Flexible Core Using Time-domain Spectral Element Method
,”
J. Sandwich Struct. Mater.
,
19
(
3
), pp.
364
393
. 10.1177/1099636216664536
43.
Vescovini
,
R.
,
D’Ottavio
,
M.
,
Dozio
,
L.
, and
Polit
,
O.
,
2018
, “
Buckling and Wrinkling of Anisotropic Sandwich Plates
,”
Int. J. Eng. Sci.
,
130
, pp.
136
156
. 10.1016/j.ijengsci.2018.05.010
44.
Mukherjee
,
S.
,
Sekhar
,
B. R.
,
Gopalakrishnan
,
S.
, and
Ganguli
,
R.
,
2020
, “
Static and Dynamic Analysis of Sandwich Panel With Spatially Varying Non-Gaussian Properties
,”
J. Sandwich Struct. Mater.
,
22
(
8
), pp.
2469
2504
. 10.1177/1099636218793979
45.
Frostig
,
Y.
,
Baruch
,
M.
,
Vilnay
,
O.
, and
Sheinman
,
I.
,
1992
, “
High-Order Theory for Sandwich-beam Behavior With Transversely Flexible Core
,”
J. Eng. Mech.
,
118
(
5
), pp.
1026
1043
. 10.1061/(ASCE)0733-9399(1992)118:5(1026)
46.
Phan
,
C. N.
,
Frostig
,
Y.
, and
Kardomateas
,
G. A.
,
2012
, “
Analysis of Sandwich Beams With a Compliant Core and With In-Plane Rigidityextended High-Order Sandwich Panel Theory Versus Elasticity
,”
ASME J. Appl. Mech.
,
79
(
4
), p.
041001
. 10.1115/1.4005550
47.
Yuan
,
Z.
,
Kardomateas
,
G. A.
, and
Frostig
,
Y.
,
2015
, “
Finite Element Formulation Based on the Extended High-Order Sandwich Panel Theory
,”
AIAA J.
,
53
(
10
), pp.
3006
3015
. 10.2514/1.J053736
48.
Yuan
,
Z.
, and
Kardomateas
,
G. A.
,
2018
, “
Nonlinear Dynamic Response of Sandwich Wide Panels
,”
Int. J. Solids. Struct.
,
148–149
, pp.
110
121
. 10.1016/j.ijsolstr.2017.09.028
49.
Phan
,
C. N.
,
Kardomateas
,
G. A.
, and
Frostig
,
Y.
,
2012
, “
Global Buckling of Sandwich Beams Based on the Extended High-Order Theory
,”
AIAA J.
,
50
(
8
), pp.
1707
1716
. 10.2514/1.J051454
50.
Yuan
,
Z.
, and
Kardomateas
,
G. A.
,
2018
, “
Nonlinear Stability Analysis of Sandwich Wide Panels-Part I: Buckling Behavior
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081006
. 10.1115/1.4039953
51.
Yuan
,
Z.
, and
Kardomateas
,
G. A.
,
2018
, “
Nonlinear Stability Analysis of sandwich Wide Panels-Part II: Postbuckling Response
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081007
. 10.1115/1.4039954
You do not currently have access to this content.