Abstract

Artificial muscles have important applications in areas ranging from robotics to prosthetics and medical devices. In this study, highly deformable artificial muscle fibers that utilize superior actuating properties of liquid crystal elastomers and liquid-like deformability of liquid metal are reported. An effective and low-cost fabrication approach using screen printing technique is developed. The actuating properties of the artificial muscle fibers, including the dependence of temperature, contraction strain, and pulling force of the artificial muscle fiber on electric heating current and heating time, are characterized. The results could provide important guidance to design and for development of soft systems that utilize the actuating mechanisms of liquid crystal elastomers.

References

1.
Chi
,
Y.
,
Tang
,
Y.
,
Liu
,
H.
, and
Yin
,
J.
,
2020
, “
Leveraging Monostable and Bistable Pre-Curved Bilayer Actuators for High-Performance Multitask Soft Robots
,”
Adv. Mater. Technol.
,
5
(
9
), p.
2000370
. 10.1002/admt.202000370
2.
Yang
,
Y.
,
Wu
,
Y.
,
Li
,
C.
,
Yang
,
X.
, and
Chen
,
W.
,
2020
, “
Flexible Actuators for Soft Robotics
,”
Adv. Intell. Syst.
,
2
(
1
), p.
1900077
.
3.
Chen
,
S.
,
Cao
,
Y.
,
Sarparast
,
M.
,
Yuan
,
H.
,
Dong
,
L.
,
Tan
,
X.
, and
Cao
,
C.
,
2020
, “
Soft Crawling Robots: Design, Actuation, and Locomotion
,”
Adv. Mater. Technol.
,
5
(
2
), p.
1900837
. 10.1002/admt.201900837
4.
Wang
,
X.
,
Guo
,
R.
, and
Liu
,
J.
,
2019
, “
Liquid Metal Based Soft Robotics: Materials, Designs, and Applications
,”
Adv. Mater. Technol.
,
4
(
2
), p.
1970009
.
5.
Cao
,
C.
,
Gao
,
X.
, and
Conn
,
A. T.
,
2019
, “
A Magnetically Coupled Dielectric Elastomer Pump for Soft Robotics
,”
Adv. Mater. Technol.
,
4
(
8
), p.
1900128
. 10.1002/admt.201900128
6.
Majidi
,
C.
,
2019
, “
Soft-Matter Engineering for Soft Robotics
,”
Adv. Mater. Technol.
,
4
(
2
), p.
1800477
. 10.1002/admt.201800477
7.
Oh
,
N.
,
Park
,
Y. J.
,
Lee
,
S.
,
Lee
,
H.
, and
Rodrigue
,
H.
,
2019
, “
Design of Paired Pouch Motors for Robotic Applications
,”
Adv. Mater. Technol.
,
4
(
1
), p.
1800414
. 10.1002/admt.201800414
8.
Tang
,
Y.
, and
Yin
,
J.
,
2018
, “
Design of Multifunctional Soft Doming Actuator for Soft Machines
,”
Adv. Mater. Technol.
,
3
(
7
), p.
1800069
. 10.1002/admt.201800069
9.
Seongpil
,
A.
,
Jin
,
K. D.
, and
Yarin Alexander
,
L.
,
2018
, “
A Blister-Like Soft Nano-Textured Thermo-Pneumatic Actuator as an Artificial Muscle
,”
Nanoscale
,
10
(
35
), pp.
16591
16600
. 10.1039/c8nr04181d
10.
Pengyu
,
P.
,
Yan
,
S.
,
Guang
,
Y.
, and
Cunfa
,
G.
,
2018
, “
Fracture Analyses of Soft Materials With Hard Inclusion
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
111003
. 10.1115/1.4040694
11.
Li
,
Z.
,
Wang
,
Y.
, and
Xiao
,
J.
,
2015
, “
Mechanics of Curvilinear Electronics and Optoelectronics
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
3
), pp.
171
189
. 10.1016/j.cossms.2015.01.003
12.
Chaofeng
,
L.
,
Ming
,
L.
,
Jianliang
,
X.
,
Inhwa
,
J.
,
Jian
,
W.
,
Yonggang
,
H.
,
Chih
,
H. K.
, and
Rogers John
,
A.
,
2013
, “
Mechanics of Tunable Hemispherical Electronic Eye Camera Systems That Combine Rigid Device Elements With Soft Elastomers
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061022
. 10.1115/1.4023962
13.
Li
,
Z.
, and
Xiao
,
J.
,
2015
, “
Mechanics and Optics of Stretchable Elastomeric Microlens Array for Artificial Compound Eye Camera
,”
J. Appl. Phys.
,
117
(
1
), p.
014904
. 10.1063/1.4905299
14.
Byun
,
S.-H.
,
Sim
,
J. Y.
,
Zhou
,
Z.
,
Lee
,
J.
,
Qazi
,
R.
,
Walicki
,
M. C.
,
Parker
,
K. E.
,
Haney
,
M. P.
,
Choi
,
S. H.
,
Shon
,
A.
,
Gereau
,
G. B.
,
Bilbily
,
J.
,
Li
,
S.
,
Liu
,
Y.
,
Yeo
,
W.-H.
,
McCall
,
J. G.
,
Xiao
,
J.
, and
Jeong
,
J.-W.
,
2019
, “
Mechanically Transformative Electronics, Sensors, and Implantable Devices
,”
Science Advances
,
5
(
11
), p.
eaay0418
. 10.1126/sciadv.aay0418
15.
Emuna
,
N.
, and
Cohen
,
N.
,
2020
, “
Inflation Induced Twist in Geometrically Incompatible Isotropic Tubes
,”
ASME J. Appl. Mech.
10.1115/1.4047980
16.
Wang
,
Y.
,
Loh
,
L. Y. W.
,
Gupta
,
U.
,
Foo
,
C. C.
, and
Zhu
,
J.
,
2020
, “
Bio-Inspired Soft Swim Bladders of Large Volume Change Using Dual Dielectric Elastomer Membranes
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041007
. 10.1115/1.4045901
17.
Li
,
K.
,
Chen
,
L.
,
Zhu
,
F.
, and
Huang
,
Y.
,
2020
, “
Thermal and Mechanical Analyses of Compliant Thermoelectric Coils for Flexible and Bio-integrated Devices
,”
ASME J. Appl. Mech.
,
88
(2), p.
021011
. 10.1115/1.4049070
18.
Zhang
,
S.
,
Wang
,
C.
,
Linghu
,
C.
,
Wang
,
S.
, and
Song
,
J.
,
2021
, “
Mechanics Strategies for Implantation of Flexible Neural Probes
,”
ASME J. Appl. Mech.
,
88
(
1
), p.
010801
. 10.1115/1.4047858
19.
Vinnikova
,
S.
,
Fang
,
H.
, and
Wang
,
S.
,
2020
, “
Mechanics of Regular-Shape Nanomeshes for Transparent and Stretchable Devices
,”
ASME J. Appl. Mech.
,
87
(
10
), p.
101010
. 10.1115/1.4047777
20.
Tang
,
R.
, and
Fu
,
H.
,
2020
, “
Mechanics of Buckled Kirigami Membranes for Stretchable Interconnects in Island-Bridge Structures
,”
ASME J. Appl. Mech.
,
87
(
5
), p.
051002
. 10.1115/1.4046003
21.
Gonzalez
,
K.
,
Xue
,
J.
,
Chu
,
A.
, and
Kirane
,
K.
,
2020
, “
Fracture and Energetic Strength Scaling of Soft, Brittle, and Weakly Nonlinear Elastomers
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
041009
. 10.1115/1.4045903
22.
Ardebili
,
H.
,
2020
, “
A Perspective on the Mechanics Issues in Soft Solid Electrolytes and the Development of Next-Generation Batteries
,”
ASME J. Appl. Mech.
,
87
(
4
), p.
040801
. 10.1115/1.4044387
23.
Zhang
,
Y.
,
,
C.
,
Lu
,
B.
,
Feng
,
X.
, and
Wang
,
J.
,
2020
, “
Theoretical Modeling on Monitoring Left Ventricle Deformation Using Conformal Piezoelectric Sensors
,”
ASME J. Appl. Mech.
,
87
(
1
), p.
011007
. 10.1115/1.4045003
24.
Shi
,
C.
,
Zou
,
Z.
,
Lei
,
Z.
,
Wu
,
X.
,
Liu
,
Z.
,
Lu
,
H.
,
Zhang
,
W.
, and
Xiao
,
J.
,
2019
, “
Investigating the Self-Healing of Dynamic Covalent Thermoset Polyimine and Its Nanocomposites
,”
ASME J. Appl. Mech.
,
86
(
10
), p.
101005
. 10.1115/1.4044088
25.
Sharma
,
A. K.
,
Kumar
,
P.
,
Singh
,
A.
,
Joglekar
,
D. M.
, and
Joglekar
,
M. M.
,
2019
, “
Electromechanical Instability of Dielectric Elastomer Actuators With Active and Inactive Electric Regions
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061008
. 10.1115/1.4042996
26.
Zhao
,
J.
,
Zhang
,
Y.
,
Li
,
X.
, and
Shi
,
M.
,
2019
, “
An Improved Design of the Substrate of Stretchable Gallium Arsenide Photovoltaics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031009
. 10.1115/1.4042320
27.
Kim
,
D.-H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y.-S.
,
Kim
,
R.-H.
,
Wang
,
S.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T.-i.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L.
,
Li
,
M.
,
Chung
,
H.-J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y.-W.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
. 10.1126/science.1206157
28.
Zou
,
Z.
,
Zhu
,
C.
,
Li
,
Y.
,
Lei
,
X.
,
Zhang
,
W.
, and
Xiao
,
J.
,
2018
, “
Rehealable, Fully Recyclable, and Malleable Electronic Skin Enabled by Dynamic Covalent Thermoset Nanocomposite
,”
Sci. Adv.
,
4
(
2
), p.
eaaq0508
. 10.1126/sciadv.aaq0508
29.
Lipomi
,
D. J.
,
Vosgueritchian
,
M.
,
Tee
,
B. C.-K.
,
Hellstrom
,
S. L.
,
Lee
,
J. A.
,
Fox
,
C. H.
, and
Bao
,
Z.
,
2011
, “
Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes
,”
Nat. Nanotechnol.
,
6
(
12
), pp.
788
792
. 10.1038/nnano.2011.184
30.
Musallam
,
S.
,
Corneil
,
B. D.
,
Greger
,
B.
,
Scherberger
,
H.
, and
Andersen
,
R. A.
,
2004
, “
Cognitive Control Signals for Neural Prosthetics
,”
Science
,
305
(
5681
), pp.
258
262
. 10.1126/science.1097938
31.
Jieun
,
L.
,
Yuanhang
,
G.
,
Yu-Jin
,
C.
,
Soonho
,
J.
,
Daehee
,
S.
,
Subi
,
C.
,
Jae-Hyuk
,
K.
,
Yunseok
,
K.
,
Kwang-Un
,
J.
, and
Suk-Kyun
,
A.
,
2020
, “
Mechanically Programmed 2D and 3D Liquid Crystal Elastomers at Macro- and Microscale via Two-Step Photocrosslinking
,”
Soft Matter
,
16
(
11
), pp.
2695
2705
. 10.1039/c9sm02237f
32.
Davidson
,
E. C.
,
Kotikian
,
A.
,
Li
,
S.
,
Aizenberg
,
J.
, and
Lewis
,
J. A.
,
2020
, “
3D Printable and Reconfigurable Liquid Crystal Elastomers With Light-Induced Shape Memory via Dynamic Bond Exchange
,”
Adv. Mater.
,
32
(
1
), p.
1905682
. 10.1002/adma.201905682
33.
Ahn
,
C.
,
Liang
,
X.
, and
Cai
,
S.
,
2019
, “
Bioinspired Design of Light-Powered Crawling, Squeezing, and Jumping Untethered Soft Robot
,”
Adv. Mater. Technol.
,
4
(
7
), p.
1900185
. 10.1002/admt.201900185
34.
Reza
,
P.
,
Shaoxing
,
Q.
, and
Honghui
,
Y.
,
2019
, “
Energy-Based Strength Theory for Soft Elastic Membranes
,”
ASME J. Appl. Mech.
,
86
(
7
), p.
071008
. 10.1115/1.4043145
35.
Li
,
T.
,
Zou
,
Z.
,
Mao
,
G.
,
Yang
,
X.
,
Liang
,
Y.
,
Li
,
C.
,
Qu
,
S.
,
Suo
,
Z.
, and
Yang
,
W.
,
2018
, “
Agile and Resilient Insect-Scale Robot
,”
Soft Robot.
,
6
(
1
), pp.
133
141
. 10.1089/soro.2018.0053
36.
Acome
,
E.
,
Mitchell
,
S. K.
,
Morrissey
,
T. G.
,
Emmett
,
M. B.
,
Benjamin
,
C.
,
King
,
M.
,
Radakovitz
,
M.
, and
Keplinger
,
C.
,
2018
, “
Hydraulically Amplified Self-Healing Electrostatic Actuators With Muscle-Like Performance
,”
Science
,
359
(
6371
), pp.
61
65
. 10.1126/science.aao6139
37.
Bhandari
,
B.
,
Lee
,
G.-Y.
, and
Ahn
,
S.-H.
,
2012
, “
A Review on IPMC Material as Actuators and Sensors: Fabrications, Characteristics and Applications
,”
Int. J. Precis. Eng. Manuf.
,
13
(
1
), pp.
141
163
. 10.1007/s12541-012-0020-8
38.
Guin
,
T.
,
Settle
,
M. J.
,
Kowalski
,
B. A.
,
Auguste
,
A. D.
,
Beblo
,
R. V.
,
Reich
,
G. W.
, and
White
,
T. J.
,
2018
, “
Layered Liquid Crystal Elastomer Actuators
,”
Nat. Commun.
,
9
(
1
), pp.
2531
. 10.1038/s41467-018-04911-4
39.
McBride
,
M. K.
,
Martinez
,
A. M.
,
Cox
,
L.
,
Alim
,
M.
,
Childress
,
K.
,
Beiswinger
,
M.
,
Podgorski
,
M.
,
Worrell
,
B. T.
,
Killgore
,
J.
, and
Bowman
,
C. N.
,
2018
, “
A Readily Programmable, Fully Reversible Shape-Switching Material
,”
Sci. Adv.
,
4
(
8
), pp.
eaat4634
. 10.1126/sciadv.aat4634
40.
Kai
,
L.
, and
Shengqiang
,
C.
,
2016
, “
Modeling of Light-Driven Bending Vibration of a Liquid Crystal Elastomer Beam
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
031009
. 10.1115/1.4032073
41.
Hays
,
M. R.
,
Wang
,
H.
, and
Oates
,
W. S.
,
2012
, “
Nonlinear Bending Mechanics of Hygroscopic Liquid Crystal Polymer Networks
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
021009
. 10.1115/1.4005547
42.
Li
,
Z.
,
Wang
,
Y.
, and
Xiao
,
J.
,
2016
, “
Mechanics of Bioinspired Imaging Systems
,”
Theor. Appl. Mech. Lett.
,
6
(
1
), pp.
11
20
. 10.1016/j.taml.2015.11.011
43.
Wang
,
S.
,
Xiao
,
J.
,
Jung
,
I.
,
Song
,
J.
,
Ko
,
H. C.
,
Stoykovich
,
M. P.
, and
Huang
,
Y.
,
2009
, “
Mechanics of Hemispherical Electronics
,”
Appl. Phys. Lett.
,
95
(
18
), p.
181912
.
44.
Kang
,
D.
,
Lee
,
S. M.
,
Li
,
Z.
,
Seyedi
,
A.
,
O'Brien
,
J.
,
Xiao
,
J.
, and
Yoon
,
J.
,
2014
, “
Compliant, Heterogeneously Integrated GaAs Micro-VCSELs Towards Wearable and Implantable Integrated Optoelectronics Platforms
,”
Adv. Opt. Mater.
,
2
(
4
), pp.
373
381
. 10.1002/adom.201300533
45.
White
,
T. J.
, and
Broer
,
D. J.
,
2015
, “
Programmable and Adaptive Mechanics With Liquid Crystal Polymer Networks and Elastomers
,”
Nat. Mater.
,
14
(
11
), pp.
1087
1098
. 10.1038/nmat4433
46.
Roach
,
D. J.
,
Kuang
,
X.
,
Yuan
,
C.
,
Chen
,
K.
, and
Jerry Qi
,
H.
,
2018
, “
Novel Ink for Ambient Condition Printing of Liquid Crystal Elastomers for 4D Printing
,”
Smart Mat. Struct.
,
27
(
12
), p.
125011
. 10.1088/1361-665X/aae96f
47.
Hamed
,
S.
,
Li
,
Y.
,
Antal
,
J.
, and
Boxin
,
Z.
,
2017
, “
Smart Biomimetic Micro/Nanostructures Based on Liquid Crystal Elastomers and Networks
,”
Soft Matter
,
13
(
44
), pp.
8006
8022
. 10.1039/c7sm01466j
48.
Ula
,
S. W.
,
Traugutt
,
N. A.
,
Volpe
,
R. H.
,
Patel
,
R. R.
,
Yu
,
K.
, and
Yakacki
,
C. M.
,
2018
, “
Liquid Crystal Elastomers: An Introduction and Review of Emerging Technologies
,”
Liq. Cryst. Rev.
,
6
(
1
), pp.
78
107
. 10.1080/21680396.2018.1530155
49.
Ambulo Cedric
,
P.
,
Burroughs Julia
,
J.
,
Boothby Jennifer
,
M.
,
Hyun
,
K.
,
Ravi
,
S. M.
, and
Ware Taylor
,
H.
,
2017
, “
Four-Dimensional Printing of Liquid Crystal Elastomers
,”
ACS Appl. Mater. Interfaces
,
9
(
42
), pp.
37332
37339
. 10.1021/acsami.7b11851
50.
Lippenberger
,
M.
,
Dengler
,
P.
,
Wandinger
,
A.
, and
Schmidt
,
M.
,
2016
, “
Photoresponsive Liquid Crystal Elastomers as Feedback Controlled Light-Driven Actuators—Theory, Real-Time Behaviour, Limitations
,”
Phys. Procedia
,
83
, pp.
1299
1307
. 10.1016/j.phpro.2016.08.137
51.
Konya
,
A.
,
Gimenez-Pinto
,
V.
,
Gimenez-Pinto
,
V.
, and
Selinger
,
R. L. B.
,
2016
, “
Modeling Defects, Shape Evolution, and Programmed Auto-Origami in Liquid Crystal Elastomers
,”
Front. Mater.
,
3
, pp.
24-1
24-7
. 10.3389/fmats.2016.00024
52.
Ahir
,
S. V.
,
Tajbakhsh
,
A. R.
, and
Terentjev
,
E. M.
,
2006
, “
Self-Assembled Shape-Memory Fibers of Triblock Liquid-Crystal Polymers
,”
Adv. Funct. Mater.
,
16
(
4
), pp.
556
560
. 10.1002/adfm.200500692
53.
Yu
,
X.
,
Elaine
,
L.
,
Hao
,
H.
,
Amine
,
G. M.
,
Beller Daniel
,
A.
,
Eva-Kristina
,
F.
,
Kamien Randall
,
D.
,
Rudolf
,
Z.
, and
Shu
,
Y.
,
2016
, “
Better Actuation Through Chemistry: Using Surface Coatings to Create Uniform Director Fields in Nematic Liquid Crystal Elastomers
,”
ACS Appl. Mater. Interfaces
,
8
(
19
), pp.
12466
12472
. 10.1021/acsami.6b02789
54.
Ware
,
T. H.
,
Biggins
,
J. S.
,
Shick
,
A. F.
,
Warner
,
M.
, and
White
,
T. J.
,
2016
, “
Localized Soft Elasticity in Liquid Crystal Elastomers
,”
Nat. Commun.
,
7
(
1
), pp.
10781-1
10781-7
. 10.1038/ncomms10781
55.
Yuan
,
C.
,
Roach
,
D. J.
,
Dunn
,
C. K.
,
Mu
,
Q.
,
Kuang
,
X.
,
Yakacki
,
C. M.
,
Wang
,
T. J.
,
Yu
,
K.
, and
Qi
,
H. J.
,
2017
, “
3D Printed Reversible Shape Changing Soft Actuators Assisted by Liquid Crystal Elastomers
,”
Soft Matter
,
13
(
33
), pp.
5558
5568
. 10.1039/C7SM00759K
56.
An
,
N.
,
Li
,
M.
, and
Zhou
,
J.
,
2016
, “
Instability of Liquid Crystal Elastomers
,”
Smart Mater. Struct.
,
25
(
1
), p.
015016
. 10.1088/0964-1726/25/1/015016
57.
Hamed
,
S.
,
Muhammad
,
S. S.
,
Antal
,
J.
, and
Boxin
,
Z.
,
2015
, “
Smart Muscle-Driven Self-Cleaning of Biomimetic Microstructures From Liquid Crystal Elastomers
,”
Adv. Mater.
,
27
(
43
), pp.
6828
6833
. 10.1002/adma.201503203
58.
Yakacki
,
M.
,
Saed
,
M.
,
Nair
,
D. P.
,
Gong
,
T.
,
Reed
,
S. M.
, and
Bowman
,
C. N.
,
2015
, “
Tailorable and Programmable Liquid-Crystalline Elastomers Using a Two-Stage Thiol–Acrylate Reaction
,”
RSC Adv.
,
5
(
25
), pp.
18997
19001
. 10.1039/C5RA01039J
You do not currently have access to this content.