Abstract

A fundamental understanding of the interactions between one-dimensional nanomaterials and the cell membrane is of great importance for assessing the hazardous effects of viruses and improving the performance of drug delivery. Here, we propose a finite element-based coarse-grained model to describe the cell entry of nanomaterials based on an absolute nodal coordinate formula and Brownian dynamics. The interactions between nanoparticles and lipid membrane are described by the Lennard–Jones potential, and a contact detection algorithm is used to determine the contact region. Compared with the theoretical and published experimental results, the correctness of the model has been verified. We take two examples to test the robustness of the model: the endocytosis of nanorods grafted with polymer chains and simultaneous entry of multiple nanorods into a lipid membrane. It shows that the model can not only capture the effect of ligand–receptor binding on the penetration but also accurately characterize the cooperative or separate entry of multiple nanorods. This coarse-grained model is computationally highly efficient and will be powerful in combination with molecular dynamics simulations to provide an understanding of cell–nanomaterial interactions.

References

1.
van de Haar
,
J.
,
Hoes
,
L. R.
,
Coles
,
C. E.
,
Seamon
,
K.
,
Fröhling
,
S.
,
Jäger
,
D.
,
Valenza
,
F.
,
de Braud
,
F.
,
De Petris
,
L.
,
Bergh
,
J.
,
Ernberg
,
I.
,
Besse
,
B.
,
Barlesi
,
F.
,
Garralda
,
E.
,
Piris-Giménez
,
A.
,
Baumann
,
M.
,
Apolone
,
G.
,
Soria
,
J. C.
,
Tabernero
,
J.
,
Caldas
,
C.
, and
Voest
,
E. E.
,
2020
, “
Caring for Patients With Cancer in the COVID-19 Era
,”
Nat. Med.
,
26
(
5
), pp.
665
671
. 10.1038/s41591-020-0874-8
2.
Hu
,
T. Y.
,
Frieman
,
M.
, and
Wolfram
,
J.
,
2020
, “
Insights From Nanomedicine Into Chloroquine Efficacy Against COVID-19
,”
Nat. Nanotechnol.
,
15
(
4
), pp.
247
249
. 10.1038/s41565-020-0674-9
3.
Tay
,
M. Z.
,
Poh
,
C. M.
,
Rénia
,
L.
,
MacAry
,
P. A.
, and
Ng
,
L. F. P.
,
2020
, “
The Trinity of COVID-19: Immunity, Inflammation and Intervention
,”
Nat. Rev. Immunol.
,
20
(
6
), pp.
363
374
. 10.1038/s41577-020-0311-8
4.
Peppas
,
N. A.
, and
Langer
,
R.
,
1994
, “
New Challenges in Biomaterials
,”
Science
,
263
(
5154
), pp.
1715
1720
. 10.1126/science.8134835
5.
Mukherjee
,
S.
,
Ghosh
,
R.
, and
Maxfield
,
F.
,
1997
, “
Endocytosis
,”
Physiol. Rev.
,
77
(
3
), pp.
759
803
. 10.1152/physrev.1997.77.3.759
6.
Kim
,
W.
,
Zou
,
G.
,
Hari
,
T. P. A.
,
Wilt
,
I. K.
,
Zhu
,
W.
,
Galle
,
N.
,
Faizi
,
H. A.
,
Hendricks
,
G. L.
,
Tori
,
K.
,
Pan
,
W.
,
Huang
,
X.
,
Steele
,
A. D.
,
Csatary
,
E. E.
,
Dekarske
,
M. M.
,
Rosen
,
J. L.
,
Ribeiro
,
N. d. Q.
,
Lee
,
K.
,
Port
,
J.
,
Fuchs
,
B. B.
,
Vlahovska
,
P. M.
,
Wuest
,
W. M.
,
Gao
,
H.
,
Ausubel
,
F. M.
, and
Mylonakis
,
E.
,
2019
, “
A Selective Membrane-Targeting Repurposed Antibiotic With Activity Against Persistent Methicillin-Resistant Staphylococcus Aureus
,”
Proc. Natl. Acad. Sci. USA
,
116
(
33
), pp.
16529
16534
. 10.1073/pnas.1904700116
7.
Hui
,
Y.
,
Yi
,
X.
,
Hou
,
F.
,
Wibowo
,
D.
,
Zhang
,
F.
,
Zhao
,
D.
,
Gao
,
H.
, and
Zhao
,
C.-X.
,
2019
, “
Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery
,”
ACS Nano
,
13
(
7
), pp.
7410
7424
. 10.1021/acsnano.9b03924
8.
Wu
,
Z.
, and
Yi
,
X.
,
2020
, “
Structures and Mechanical Behaviors of Soft Nanotubes Confining Adhesive Single or Multiple Elastic Nanoparticles
,”
J. Mech. Phys. Solids
,
137
(
1
), p.
103867
. 10.1016/j.jmps.2020.103867
9.
Yu
,
M.
,
Song
,
W.
,
Tian
,
F.
,
Dai
,
Z.
,
Zhu
,
Q.
,
Ahmad
,
E.
,
Guo
,
S.
,
Zhu
,
C.
,
Zhong
,
H.
,
Yuan
,
Y.
,
Zhang
,
T.
,
Yi
,
X.
,
Shi
,
X.
,
Gan
,
Y.
, and
Gao
,
H.
,
2019
, “
Temperature- and Rigidity-Mediated Rapid Transport of Lipid Nanovesicles in Hydrogels
,”
Proc. Natl. Acad. Sci. USA
,
116
(
12
), pp.
5362
5369
. 10.1073/pnas.1818924116
10.
Gao
,
H.
,
2014
, “
Probing Mechanical Principles of Cell–Nanomaterial Interactions
,”
J. Mech. Phys. Solids
,
62
(
1
), pp.
312
339
. 10.1016/j.jmps.2013.08.018
11.
Yi
,
X.
,
Shi
,
X.
, and
Gao
,
H.
,
2011
, “
Cellular Uptake of Elastic Nanoparticles
,”
Phys. Rev. Lett.
,
107
(
9
), p.
098101
. 10.1103/PhysRevLett.107.098101
12.
Wu
,
Z.
,
Yuan
,
H.
,
Zhang
,
X.
, and
Yi
,
X.
,
2019
, “
Sidewall Contact Regulating the Nanorod Packing Inside Vesicles With Relative Volumes
,”
Soft Matter
,
15
(
12
), pp.
2552
2559
. 10.1039/C8SM01656A
13.
Pang
,
Y. T.
,
Ge
,
Z.
,
Zhang
,
B.
,
Xiu
,
P.
,
Li
,
Q.
, and
Wang
,
Y.
,
2020
, “
Pore Formation Induced by Nanoparticles Binding to a Lipid Membrane
,”
Nanoscale
,
12
(
14
), pp.
7902
7913
. 10.1039/C9NR10534D
14.
Yi
,
X.
, and
Gao
,
H.
,
2016
, “
Incorporation of Soft Particles Into Lipid Vesicles: Effects of Particle Size and Elasticity
,”
Langmuir
,
32
(
49
), pp.
13252
13260
. 10.1021/acs.langmuir.6b03184
15.
Yi
,
X.
, and
Gao
,
H.
,
2015
, “
Cell Membrane Wrapping of a Spherical Thin Elastic Shell
,”
Soft Matter
,
11
(
6
), pp.
1107
1115
. 10.1039/C4SM02427C
16.
Cheng
,
Q. H.
,
Liu
,
P.
,
Gao
,
H. J.
, and
Zhang
,
Y. W.
,
2009
, “
A Computational Modeling for Micropipette-Manipulated Cell Detachment From a Substrate Mediated by Receptor–Ligand Binding
,”
J. Mech. Phys. Solids
,
57
(
2
), pp.
205
220
. 10.1016/j.jmps.2008.11.003
17.
Tang
,
X.
,
Shi
,
X.
,
Gan
,
Y.
, and
Yi
,
X.
,
2020
, “
Nanomechanical Characterization of Pressurized Elastic Fluid Nanovesicles Using Indentation Analysis
,”
Extreme Mech. Lett.
,
34
(
1
), p.
100613
. 10.1016/j.eml.2019.100613
18.
Quan
,
X.
,
Zhao
,
D.
,
Li
,
L.
, and
Zhou
,
J.
,
2017
, “
Understanding the Cellular Uptake of pH-Responsive Zwitterionic Gold Nanoparticles: A Computer Simulation Study
,”
Langmuir
,
33
(
50
), pp.
14480
14489
. 10.1021/acs.langmuir.7b03544
19.
Spangler
,
E. J.
,
Upreti
,
S.
, and
Laradji
,
M.
,
2016
, “
Partial Wrapping and Spontaneous Endocytosis of Spherical Nanoparticles by Tensionless Lipid Membranes
,”
J. Chem. Phys.
,
144
(
4
), p.
044901
. 10.1063/1.4939764
20.
Shen
,
Z.
,
Ye
,
H.
,
Yi
,
X.
, and
Li
,
Y.
,
2019
, “
Membrane Wrapping Efficiency of Elastic Nanoparticles During Endocytosis: Size and Shape Matter
,”
ACS Nano
,
13
(
1
), pp.
215
228
. 10.1021/acsnano.8b05340
21.
Yang
,
K.
, and
Ma
,
Y. Q.
,
2010
, “
Computer Simulation of the Translocation of Nanoparticles With Different Shapes Across a Lipid Bilayer
,”
Nat. Nanotechnol.
,
5
(
8
), pp.
579
583
. 10.1038/nnano.2010.141
22.
Lin
,
X.
,
Lin
,
X.
, and
Gu
,
N.
,
2020
, “
Optimization of Hydrophobic Nanoparticles to Better Target Lipid Rafts With Molecular Dynamics Simulations
,”
Nanoscale
,
12
(
6
), pp.
4101
4109
. 10.1039/C9NR09226A
23.
Zhang
,
L.
,
Zhang
,
Z.
,
Negahban
,
M.
, and
Jérusalem
,
A.
,
2019
, “
Molecular Dynamics Simulation of Cell Membrane Pore Sealing
,”
Extreme Mech. Lett.
,
27
(
1
), pp.
83
93
. 10.1016/j.eml.2019.01.008
24.
Zou
,
G.
,
Yi
,
X.
,
Zhu
,
W.
, and
Gao
,
H.
,
2018
, “
Packing of Flexible Nanofibers in Vesicles
,”
Extreme Mech. Lett.
,
19
(
1
), pp.
20
26
. 10.1016/j.eml.2017.12.003
25.
Rangarajan
,
R.
, and
Gao
,
H.
,
2015
, “
A Finite Element Method to Compute Three-Dimensional Equilibrium Configurations of Fluid Membranes: Optimal Parameterization, Variational Formulation and Applications
,”
J. Comput. Phys.
,
297
(
1
), pp.
266
294
. 10.1016/j.jcp.2015.05.001
26.
Sauer
,
R. A.
,
Duong
,
T. X.
,
Mandadapu
,
K. K.
, and
Steigmann
,
D. J.
,
2017
, “
A Stabilized Finite Element Formulation for Liquid Shells and Its Application to Lipid Bilayers
,”
J. Comput. Phys.
,
330
(
1
), pp.
436
466
. 10.1016/j.jcp.2016.11.004
27.
Hou
,
J. C.
,
Maas
,
S. A.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2018
, “
Finite Element Formulation of Multiphasic Shell Elements for Cell Mechanics Analyses in FEBio
,”
ASME J. Biomech. Eng.
,
140
(
12
), p.
121009
. 10.1115/1.4041043
28.
Ma
,
L.
, and
Klug
,
W. S.
,
2008
, “
Viscous Regularization and r-Adaptive Remeshing for Finite Element Analysis of Lipid Membrane Mechanics
,”
J. Comput. Phys.
,
227
(
11
), pp.
5816
5835
. 10.1016/j.jcp.2008.02.019
29.
Feng
,
F.
, and
Klug
,
W. S.
,
2006
, “
Finite Element Modeling of Lipid Bilayer Membranes
,”
J. Comput. Phys.
,
220
(
1
), pp.
394
408
. 10.1016/j.jcp.2006.05.023
30.
Rodrigues
,
D.
,
Ausas
,
R. F.
,
Mut
,
F.
, and
Buscaglia
,
G. C.
,
2015
, “
A Semi-implicit Finite Element Method for Viscous Lipid Membranes
,”
J. Comput. Phys.
,
298
(
1
), pp.
565
584
. 10.1016/j.jcp.2015.06.010
31.
Yeo
,
J.
,
Jung
,
G.
,
Tarakanova
,
A.
,
Martín-Martínez
,
F. J.
,
Qin
,
Z.
,
Cheng
,
Y.
,
Zhang
,
Y.-W.
, and
Buehler
,
M. J.
,
2018
, “
Multiscale Modeling of Keratin, Collagen, Elastin and Related Human Diseases: Perspectives From Atomistic to Coarse-Grained Molecular Dynamics Simulations
,”
Extreme Mech. Lett.
,
20
(
1
), pp.
112
124
. 10.1016/j.eml.2018.01.009
32.
Reilly
,
C. B.
, and
Ingber
,
D. E.
,
2018
, “
Multi-scale Modeling Reveals use of Hierarchical Tensegrity Principles at the Molecular, Multi-molecular, and Cellular Levels
,”
Extreme Mech. Lett.
,
20
(
1
), pp.
21
28
. 10.1016/j.eml.2018.01.001
33.
Cyron
,
C. J.
, and
Wall
,
W. A.
,
2009
, “
Finite-Element Approach to Brownian Dynamics of Polymers
,”
Phys. Rev. E
,
80
(
6
), p.
066704
. 10.1103/PhysRevE.80.066704
34.
Cyron
,
C. J.
, and
Wall
,
W. A.
,
2012
, “
Numerical Method for the Simulation of the Brownian Dynamics of Rod-Like Microstructures With Three-Dimensional Nonlinear Beam Elements
,”
Int. J. Numer. Methods Eng.
,
90
(
1
), pp.
955
987
. 10.1002/nme.3351
35.
Cyron
,
C. J.
, and
Wall
,
W. A.
,
2010
, “
Consistent Finite-Element Approach to Brownian Polymer Dynamics With Anisotropic Friction
,”
Phys. Rev. E
,
82
(
6
), p.
066705
. 10.1103/PhysRevE.82.066705
36.
Müller
,
K. W.
,
Birzle
,
A. M.
, and
Wall
,
W. A.
,
2016
, “
Beam Finite-Element Model of a Molecular Motor for the Simulation of Active Fibre Networks
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2185
), p.
20150555
. 10.1098/rspa.2015.0555
37.
Lin
,
Y.
,
Wei
,
X.
,
Qian
,
J.
,
Sze
,
K. Y.
, and
Shenoy
,
V. B.
,
2014
, “
A Combined Finite Element-Langevin Dynamics (FEM-LD) Approach for Analyzing the Mechanical Response of Bio-polymer Networks
,”
J. Mech. Phys. Solids
,
62
(
1
), pp.
2
18
. 10.1016/j.jmps.2013.06.006
38.
Schulz
,
M.
,
Dittmann
,
J.
, and
Böl
,
M.
,
2019
, “
Modeling the Mechanical Behavior of Semi-flexible Polymer Chains Using a Surrogate Model Based on a Finite-Element Approach to Brownian Polymer Dynamics
,”
J. Mech. Phys. Solids
,
130
(
1
), pp.
101
117
. 10.1016/j.jmps.2019.05.016
39.
Wei
,
X.
,
Zhu
,
Q.
,
Qian
,
J.
,
Lin
,
Y.
, and
Shenoy
,
V. B.
,
2016
, “
Response of Biopolymer Networks Governed by the Physical Properties of Cross-Linking Molecules
,”
Soft Matter
,
12
(
9
), pp.
2537
2541
. 10.1039/C5SM02820E
40.
Cyron
,
C. J.
,
Müller
,
K. W.
,
Bausch
,
A. R.
, and
Wall
,
W. A.
,
2013
, “
Micromechanical Simulations of Biopolymer Networks With Finite Elements
,”
J. Comput. Phys.
,
244
(
1
), pp.
236
251
. 10.1016/j.jcp.2012.10.025
41.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
. 10.1023/A:1009740800463
42.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
, and
Dan
,
N.
,
2016
, “
Chrono: An Open Source Multi-Physics Dynamics Engine
,”
International Conference on High Performance Computing in Science and Engineering
,
Soláň, Czech Republic
,
May 25–28, 2015
, pp.
19
49
.
43.
Yamashita
,
H.
,
Valkeapää
,
A. I.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2015
, “
Continuum Mechanics Based Bilinear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051012
. 10.1115/1.4028657
44.
Bathe
,
K. J.
, and
Dvorkin
,
E. N.
,
1986
, “
A Formulation of General Shell Elements—The Use of Mixed Interpolation of Tensorial Components
,”
Int. J. Numer. Methods Eng.
,
22
(
3
), pp.
697
722
. 10.1002/nme.1620220312
45.
Dvorkin
,
E. N.
, and
Bathe
,
K. J.
,
1984
, “
A Continuum Mechanics Based Four-Node Shell Element for General Non-linear Analysis
,”
Eng. Comput.
,
1
(
1
), pp.
77
88
. 10.1108/eb023562
46.
Andelfinger
,
U.
, and
Ramm
,
E.
,
1993
, “
EAS-Elements for Two-Dimensional, Three-Dimensional, Plate and Shell Structures and Their Equivalence to HR-Elements
,”
Int. J. Numer. Methods Eng.
,
36
(
8
), pp.
1311
1337
. 10.1002/nme.1620360805
47.
Simo
,
J. C.
, and
Rifai
,
M.
,
1990
, “
A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
,
29
(
8
), pp.
1595
1638
. 10.1002/nme.1620290802
48.
Erwin
,
C.
, “
Bullet 2.82 Physics SDK Manual Table of Contents
,” https://pybullet.org/wordpress/, Accessed on July 19, 2020.
49.
Wang
,
W.
,
Wu
,
Z.
,
Lin
,
X.
,
Si
,
T.
, and
He
,
Q.
,
2019
, “
Gold-Nanoshell-Functionalized Polymer Nanoswimmer for Photomechanical Poration of Single-Cell Membrane
,”
J. Am. Chem. Soc.
,
141
(
16
), pp.
6601
6608
. 10.1021/jacs.8b13882
50.
Gonzalez-Rodriguez
,
D.
,
Guillou
,
L.
,
Cornat
,
F.
,
Lafaurie-Janvore
,
J.
,
Babataheri
,
A.
,
de Langre
,
E.
,
Barakat
,
A. I.
, and
Husson
,
J.
,
2016
, “
Mechanical Criterion for the Rupture of a Cell Membrane Under Compression
,”
Biophys. J.
,
111
(
12
), pp.
2711
2721
. 10.1016/j.bpj.2016.11.001
51.
Yi
,
X.
,
Shi
,
X.
, and
Gao
,
H.
,
2014
, “
A Universal Law for Cell Uptake of One-Dimensional Nanomaterials
,”
Nano Lett.
,
14
(
2
), pp.
1049
1055
. 10.1021/nl404727m
52.
Yi
,
X.
, and
Gao
,
H.
,
2014
, “
Phase Diagrams and Morphological Evolution in Wrapping of Rod-Shaped Elastic Nanoparticles by Cell Membrane: A Two-Dimensional Study
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
89
(
6
), p.
062712
. 10.1103/PhysRevE.89.062712
53.
Shen
,
C.
,
Zou
,
G.
,
Guo
,
W.
, and
Gao
,
H.
,
2020
, “
Lipid Coating and end Functionalization Govern the Formation and Stability of Transmembrane Carbon Nanotube Porins
,”
Carbon
,
164
(
1
), pp.
391
397
. 10.1016/j.carbon.2020.04.011
54.
Shi
,
X.
,
von dem Bussche
,
A.
,
Hurt
,
R. H.
,
Kane
,
A. B.
, and
Gao
,
H.
,
2011
, “
Cell Entry of One-Dimensional Nanomaterials Occurs by Tip Recognition and Rotation
,”
Nat. Nanotechnol.
,
6
(
11
), pp.
714
719
. 10.1038/nnano.2011.151
55.
Khosravanizadeh
,
A.
,
Sens
,
P.
, and
Mohammad-Rafiee
,
F.
,
2019
, “
Wrapping of a Nanowire by a Supported Lipid Membrane
,”
Soft Matter
,
15
(
37
), pp.
7490
7500
. 10.1039/C9SM00618D
56.
Xia
,
T.
,
Kovochich
,
M.
,
Liong
,
M.
,
Meng
,
H.
,
Kabehie
,
S.
,
George
,
S.
,
Zink
,
J. I.
, and
Nel
,
A. E.
,
2009
, “
Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs
,”
ACS Nano
,
3
(
10
), pp.
3273
3286
. 10.1021/nn900918w
57.
Deng
,
H.
,
Dutta
,
P.
, and
Liu
,
J.
,
2018
, “
Stochastic Simulations of Nanoparticle Internalization Through Transferrin Receptor Dependent Clathrin-Mediated Endocytosis
,”
Biochim. Biophys. Acta (BBA)-General Subjects
,
1862
(
9
), pp.
2104
2111
. 10.1016/j.bbagen.2018.06.018
58.
Yi
,
X.
, and
Gao
,
H.
,
2017
, “
Kinetics of Receptor-Mediated Endocytosis of Elastic Nanoparticles
,”
Nanoscale
,
9
(
1
), pp.
454
463
. 10.1039/C6NR07179A
59.
Wang
,
J.
,
Yao
,
H.
, and
Shi
,
X.
,
2014
, “
Cooperative Entry of Nanoparticles Into the Cell
,”
J. Mech. Phys. Solids
,
73
(
1
), pp.
151
165
. 10.1016/j.jmps.2014.09.006
60.
Reynwar
,
B. J.
,
Illya
,
G.
,
Harmandaris
,
V. A.
,
Müller
,
M. M.
,
Kremer
,
K.
, and
Deserno
,
M.
,
2007
, “
Aggregation and Vesiculation of Membrane Proteins by Curvature-Mediated Interactions
,”
Nature
,
447
(
7143
), pp.
461
464
. 10.1038/nature05840
61.
Jaskiewicz
,
K.
,
Larsen
,
A.
,
Schaeffel
,
D.
,
Koynov
,
K.
,
Lieberwirth
,
I.
,
Fytas
,
G.
,
Landfester
,
K.
, and
Kroeger
,
A.
,
2012
, “
Incorporation of Nanoparticles Into Polymersomes: Size and Concentration Effects
,”
ACS Nano
,
6
(
8
), pp.
7254
7262
. 10.1021/nn302367m
62.
Tang
,
H.
,
Ye
,
H.
,
Zhang
,
H.
, and
Zheng
,
Y.
,
2015
, “
Wrapping of Nanoparticles by the Cell Membrane: The Role of Interactions Between the Nanoparticles
,”
Soft Matter
,
11
(
44
), pp.
8674
8683
. 10.1039/C5SM01460C
You do not currently have access to this content.