Abstract

In this work, we present a novel inverse approach to characterize the nonhomogeneous mechanical behavior of linear elastic solids. In this approach, we optimize the geometric parameters and shear modulus values of the predefined moving morphable inclusions (MMIs) to solve the inverse problem. Thereby, the total number of the optimization parameters is remarkably reduced compared with the conventional iterative inverse algorithms to identify the nonhomogeneous shear modulus distribution of solids. The proposed inverse approach is tested by multiple numerical examples, and we observe that this approach is capable of preserving the shape and the shear moduli of the inclusions well. In particular, this inverse approach performs well even without any regularization when the noise level is not very high. Overall, the proposed approach provides a new paradigm to solve the inverse problem in elasticity and has potential of addressing the issue of computational inefficacy existing in the conventional inverse approaches.

References

1.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
,
1991
, “
Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging.
,
13
(
2
), pp.
111
134
. 10.1177/016173469101300201
2.
Ophir
,
J.
,
Alam
,
S. K.
,
Garra
,
B.
,
Kallel
,
F.
,
Konofagou
,
E.
,
Krouskop
,
T.
, and
Varghese
,
T.
,
1999
, “
Elastography: Ultrasonic Estimation and Imaging of the Elastic Properties of Tissues
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
,
213
(
3
), pp.
203
233
. 10.1243/0954411991534933
3.
Sack
,
I.
,
Beierbach
,
B.
,
Hamhaber
,
U.
,
Klatt
,
D.
, and
Braun
,
A.
,
2008
, “
Non-Invasive Measurement of Brain Viscoelasticity Using Magnetic Resonance Elastography
,”
NMR Biomed.
,
21
(
3
), pp.
265
271
. 10.1002/nbm.1189
4.
Trabelsi
,
O.
,
Gutierrez
,
M.
,
Farzaneh
,
S.
,
Duprey
,
A.
, and
Avril
,
S.
,
2017
, “
A Non-Invasive Methodology for ATAA Rupture Risk Estimation
,”
J. Biomech.
,
66
, pp.
119
126
. 10.1016/j.jbiomech.2017.11.012
5.
Shore
,
S. W.
,
Barbone
,
P. E.
,
Oberai
,
A. A.
, and
Morgan
,
E. F.
,
2011
, “
Transversely Isotropic Elasticity Imaging of Cancellous Bone
,”
ASME J. Biomech. Eng.
,
133
(
6
), pp.
1
11
. 10.1115/1.4004231
6.
Zhu
,
Y.
,
Hall
,
T. J.
, and
Jiang
,
J.
,
2003
, “
A Finite-Element Approach for Young’s Modulus Reconstruction
,”
IEEE Trans. Med. Imaging.
,
22
(
7
), pp.
890
901
. 10.1109/TMI.2003.815065
7.
Pan
,
X.
,
Liu
,
K.
,
Bai
,
J.
, and
Luo
,
J. W.
,
2014
, “
A Regularization-Free Elasticity Reconstruction Method for Ultrasound Elastography With Freehand Scan
,”
Biomed. Eng. Online.
,
13
(
1
), p.
132
. 10.1186/1475-925X-13-132
8.
Oberai
,
A. A.
,
Gokhale
,
N. H.
, and
Feijoo
,
G. R.
,
2003
, “
Solution of Inverse Problems in Elasticity Imaging Using the Adjoint Method
,”
Inverse Probl.
,
19
(
2
), pp.
297
313
. 10.1088/0266-5611/19/2/304
9.
Simón-allué
,
R.
,
Calvo
,
B.
,
Oberai
,
A. A.
, and
Barbone
,
P. E.
,
2017
, “
Towards the Mechanical Characterization of Abdominal Wall by Inverse Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
66
, pp.
127
137
. 10.1016/j.jmbbm.2016.11.007
10.
Liu
,
Z.
,
Sun
,
Y. L.
,
Deng
,
J. W.
,
Zhao
,
D. M.
,
Mei
,
Y.
, and
Luo
,
J. W.
,
2020
, “
A Comparative Study of Direct and Iterative Inversion Approaches to Determine the Spatial Shear Modulus Distribution of Elastic Solids
,”
Int. J. Appl. Mech.
,
11
(
10
), p.
1950097
. 10.1142/S1758825119500972
11.
Lalitha Sridhar
,
S.
,
Mei
,
Y.
, and
Goenezen
,
S.
,
2018
, “
Improving the Sensitivity to Map Nonlinear Parameters for Hyperelastic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
474
491
. 10.1016/j.cma.2017.11.028
12.
Goenezen
,
S.
,
Barbone
,
P.
, and
Oberai
,
A. A.
,
2011
, “
Solution of the Nonlinear Elasticity Imaging Inverse Problem: The Incompressible Case
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1406
1420
. 10.1016/j.cma.2010.12.018
13.
Gokhale
,
N. H.
,
Barbone
,
P. E.
, and
Oberai
,
A. A.
,
2008
, “
Solution of the Nonlinear Elasticity Imaging Inverse Problem: The Compressible Case
,”
Inverse Probl.
,
24
(
4
), p.
045010
. 10.1088/0266-5611/24/4/045010
14.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
New York
.
15.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically-A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
. 10.1115/1.4027609
16.
Guo
,
X.
,
Zhang
,
W. S.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
. 10.1016/j.cma.2016.07.018
17.
Zhang
,
W. S.
,
Yang
,
W. Y.
,
Zhou
,
J. H.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011011
. 10.1115/1.4034972
18.
Zhang
,
W. S.
,
Chen
,
J. S.
,
Zhu
,
X. F.
,
Zhou
,
J. H.
,
Xue
,
D. C.
,
Lei
,
X.
, and
Guo
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
. 10.1016/j.cma.2017.05.002
19.
Xue
,
R. Y.
,
Liu
,
C.
,
Zhang
,
W. S.
,
Zhu
,
Y. C.
,
Tang
,
S.
,
Du
,
Z. L.
, and
Guo
,
X.
,
2019
, “
Explicit Structural Topology Optimization Under Finite Deformation via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Engrg.
,
344
, pp.
798
818
. 10.1016/j.cma.2018.10.011
20.
Liu
,
C.
,
Du
,
Z. L.
,
Zhang
,
W. S.
,
Zhu
,
Y. C.
, and
Guo
,
X.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081008
. 10.1115/1.4036941
21.
Liu
,
C.
,
Zhu
,
Y. C.
,
Sun
,
Z.
,
Li
,
D. D.
,
Du
,
Z. L.
,
Zhang
,
W. S.
, and
Guo
,
X.
,
2018
, “
An Efficient Moving Morphable Component (MMC)-Based Approach for Multi-Resolution Topology Optimization
,”
Struct. Multidiscip. Optim.
,
58
(
6
), pp.
2455
2479
. 10.1007/s00158-018-2114-0
22.
Liu
,
D.
, and
Du
,
J. F.
,
2019
, “
A Moving Morphable Components Based Shape Reconstruction Framework for Electrical Impedance Tomography
,”
IEEE Trans. Med. Imaging.
,
38
(
12
), pp.
2937
2948
. 10.1109/TMI.2019.2918566
23.
Liu
,
D.
,
Gu
,
D. P.
,
Smyl
,
D.
,
Deng
,
J. S.
, and
Du
,
J. F.
,
2020
, “
Shape Reconstruction Using Boolean Operations in Electrical Impedance Tomography
,”
IEEE Trans. Med. Imaging.
,
39
(
9
), pp.
2954
2964
. 10.1109/TMI.2020.2983055
24.
Reddy
,
J. N.
,
1993
,
An Introduction to the Finite Element Method
,
McGraw-Hill
,
New York
.
25.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Corporation
,
New York
.
26.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
,
Nithiarasu
,
P.
, and
Zhu
,
J. Z.
,
The Finite Element Method
,
McGraw-Hill
,
London
.
27.
Mei
,
Y.
,
Stover
,
B.
,
Afsar Kazerooni
,
N.
,
Srinivasa
,
A.
,
Hajhashemkhani
,
M.
,
Hematiyan
,
M. R.
, and
Goenezen
,
S.
,
2018
, “
A Comparative Study of Two Constitutive Models Within an Inverse Approach to Determine the Spatial Stiffness Distribution in Soft Materials
,”
Int. J. Mech. Sci.
,
140
, pp.
446
454
. 10.1016/j.ijmecsci.2018.03.004
28.
Dong
,
L.
,
Wijesinghe
,
P.
,
Dantuono
,
J. T.
,
Sampson
,
D. D.
,
Munro
,
P. R. T.
,
Kennedy
,
B. F.
, and
Kennedy
,
A. A.
,
2016
, “
Quantitative Compression Optical Coherence Elastography as an Inverse Elasticity Problem
,”
IEEE J. Sel. Top. QUANTUM Electron.
,
22
(
3
), p.
6802211
. 10.1109/jstqe.2015.2512597
29.
Byrd
,
R. H.
,
Lu
,
P.
,
Nocedal
,
J.
, and
Zhu
,
C.
,
1995
, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput.
,
16
(
5
), pp.
1190
1208
. 10.1137/0916069
30.
Mei
,
Y.
,
Kuznetsov
,
S.
, and
Goenezen
,
S.
,
2016
, “
Reduced Boundary Sensitivity and Improved Contrast of the Regularized Inverse Problem Solution in Elasticity
,”
Trans. ASME J. Appl. Mech.
,
83
(
3
), p.
031001
. 10.1115/1.4031937
31.
Mei
,
Y.
,
Tajderi
,
M.
, and
Goenezen
,
S.
,
2017
, “
Regularizing Biomechanical Maps for Partially Known Material Properties
,”
Int. J. Appl. Mech.
,
9
(
2
), p.
1750020
. 10.1142/S175882511750020X
You do not currently have access to this content.