Abstract

In this article, we carry out a theoretical investigation of the macroscopic response and field statistics in two-phase particulate composites with elasto-plastic constituents and random microstructures under cyclic loading conditions. To this end, we make use of the “incremental variational homogenization” (IVH) procedure of Agoras et al. (2016, “Incremental Variational Procedure for Elasto-Viscoplastic Composites and Application to Polymer- and Metal-Matrix Composites Reinforced by Spheroidal Elastic Particles,” Int. J. Solid Struct., 97–98, pp. 668–686) and corresponding unit cell finite element simulations. Results are obtained for statistically isotropic distributions of spherical particles and for “spheroidal distributions” of spheroidal particles. It is shown analytically that the IVH estimate of Agoras et al. and that of Lahellec and Suquet (2013, “Effective Response and Field Statistics in Elasto-Plastic and Elasto-Visco-Plastic Composites Under Radial and Non-Radial Loadings,” Int. J. Plasticity, 42, pp. 1–30) are equivalent. In addition, it is illustrated by means of specific numeral comparisons that the IVH estimate is also equivalent (to within numerical accuracy) to the corresponding estimates of Idiart and Lahellec (2016, “Estimates for the Overall Linear Properties of Pointwise Heterogeneous Solids With Application to Elasto-Viscoplasticity,” J. Mech. Phys. Solids, 97, pp. 317–332) and Lucchetta et al. (2019, “A Double Incremental Variational Procedure for Elastoplastic Composites With Combined Isotropic and Linear Kinematic Hardening,” Int. J. Solid Struct., 158, pp. 243–267). Furthermore, it is shown in the context of specific exact results for composite materials with lamellar microstructures that the elastic–plastic coupling and the Bauschinger effect are the macroscopic manifestations of the incompatibility of the local elastic strains. Local strain hardening is incorporate in the IVH model. The predictions of the IVH model for the macroscopic response of particulate composites are found to be in good agreement with the corresponding numerical results, in general. For the extreme cases of rigidly reinforced composites and porous materials, however, the IVH model fails to capture the elastic–plastic coupling and the Bauschinger effect. The underlying reasons for this shortcoming are discussed and a strategy toward the improvement of the IVH model is proposed.

References

1.
Agoras
,
M.
,
Avazmohammadi
,
R.
, and
Ponte Castañeda
,
P.
,
2016
, “
Incremental Variational Procedure for Elasto-Viscoplastic Composites and Application to Polymer- and Metal-Matrix Composites Reinforced by Spheroidal Elastic Particles
,”
Int. J. Solid Struct.
,
97–98
, pp.
668
686
. 10.1016/j.ijsolstr.2016.04.008
2.
Lahellec
,
N.
, and
Suquet
,
P.
,
2013
, “
Effective Response and Field Statistics in Elasto-Plastic and Elasto-Visco-Plastic Composites Under Radial and Non-Radial Loadings
,”
Int. J. Plasticity
,
42
, pp.
1
30
. 10.1016/j.ijplas.2012.09.005
3.
Idiart
,
M. I.
, and
Lahellec
,
N.
,
2016
, “
Estimates for the Overall Linear Properties of Pointwise Heterogeneous Solids With Application to Elasto-Viscoplasticity
,”
J. Mech. Phys. Solids
,
97
, pp.
317
332
. 10.1016/j.jmps.2015.12.017
4.
Lucchetta
,
A.
,
Auslender
,
F.
,
Bornert
,
M.
, and
Kondo
,
D.
,
2019
, “
A Double Incremental Variational Procedure for Elastoplastic Composites With Combined Isotropic and Linear Kinematic Hardening
,”
Int. J. Solid Struct.
,
158
, pp.
243
267
. 10.1016/j.ijsolstr.2018.09.012
5.
Mialon
,
P.
,
1986
, “
Eléments D’analyse Et De Résolution Numérique Des Relations De L’élasto-plasticite
,”
EDF Bull. Dir. Etud. Rech. Série C. Math., Inf.
,
3
, pp.
57
89
.
6.
Ortiz
,
M.
, and
Stainier
,
L.
,
1999
, “
The Variational Formulation of Visco-Plastic Constitutive Updates
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
3–4
), pp.
419
444
. 10.1016/S0045-7825(98)00219-9
7.
Lahellec
,
N.
, and
Suquet
,
P.
,
2007
, “
On the Effective Behavior of Nonlinear Inelastic Composites: I. Incremental Variational Principles
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1932
1963
. 10.1016/j.jmps.2007.02.003
8.
Lemaitre
,
J.
, and
Chaboche
,
J.
,
1994
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
9.
Ponte Castañeda
,
P.
,
1992
, “
New Variational Principles in Plasticity and Their Application to Composite Materials
,”
J. Mech. Phys. Solids
,
40
(
8
), pp.
1757
1788
. 10.1016/0022-5096(92)90050-C
10.
Mercier
,
S.
, and
Molinari
,
A.
,
2009
, “
Homogenization of Elastic-Visco-Plastic Heterogeneous Materials: Self-Consistent and Mori-Tanaka Schemes
,”
Int. J. Plast.
,
25
(
6
), pp.
1024
1048
. 10.1016/j.ijplas.2008.08.006
11.
Doghri
,
I.
,
Adam
,
L.
, and
Bilger
,
N.
,
2010
, “
Mean-Field Homogenization of Elasto-Visco-Plastic Composites Based on a General Affine Linearization Method
,”
Int. J. Plast.
,
26
(
2
), pp.
219
238
. 10.1016/j.ijplas.2009.06.003
12.
Brassart
,
L.
,
Stainier
,
L.
,
Doghri
,
I.
, and
Delannay
,
L.
,
2011
, “
A Variational Formulation for the Incremental Homogenization of Elasto-Plastic Composites
,”
J. Mech. Phys. Solids
,
59
(
12
), pp.
2455
2475
. 10.1016/j.jmps.2011.09.004
13.
Ponte Castañeda
,
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
45
71
. 10.1016/0022-5096(91)90030-R
14.
Lahellec
,
N.
,
Ponte Castañeda
,
P.
, and
Suquet
,
P.
,
2011
, “
Variational Estimates for the Effective Response and Field Statistics in Thermoelastic Composites With Intra-Phase Property Fluctuations
,”
Proc. R. Soc. Lond. A
,
467
, pp.
2224
2246
.
15.
Cotelo
,
J.
,
Das
,
S.
, and
Ponte Castañeda
,
P.
,
2020
, “
A Differential Homogenization Method for Estimating the Macroscopic Response and Field Statistics of Particulate Viscoelastic Composites
,”
Int. J. Solid Struct.
,
204–205
, pp.
199
219
. 10.1016/j.ijsolstr.2020.07.019
16.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites With Complex Microstructure
,”
Comp. Methods App. Mech. Eng.
,
157
(
1–2
), pp.
69
94
. 10.1016/S0045-7825(97)00218-1
17.
Michel
,
J.-C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
1999
, “
Effective Properties of Composite Materials With Periodic Microstructure: A Computational Approach
,”
Comp. Methods App. Mech. Eng.
,
172
(
1-4
), pp.
109
143
. 10.1016/S0045-7825(98)00227-8
18.
González
,
C.
,
Segurado
,
J.
, and
LLorca
,
J.
,
2004
, “
Numerical Simulation of Elasto-Plastic Deformation of Composites: Evolution of Stress Microfields and Implications for Homogenization
,”
J. Mech. Phys. Solids
,
52
(
7
), pp.
1573
1593
. 10.1016/j.jmps.2004.01.002
19.
Pierard
,
O.
,
González
,
C.
,
Segurado
,
J.
,
LLorca
,
J.
, and
Doghri
,
I.
,
2007
, “
Micromechanics of Elasto-Plastic Materials Reinforced With Ellipsoidal Inclusions
,”
Int. J. Solids Struct.
,
44
(
21
), pp.
6945
6962
. 10.1016/j.ijsolstr.2007.03.019
20.
Papadioti
,
I.
,
Danas
,
K.
, and
Aravas
,
N.
,
2016
, “
A Methodology for the Estimation of the Effective Yield Function of Isotropic Composites
,”
Int. J. Solids Struct.
,
87
, pp.
120
138
. 10.1016/j.ijsolstr.2016.02.022
21.
Willis
,
J. R.
,
1977
, “
Bounds and Self-Consistent Estimates for the Overall Moduli of Anisotropic Composites
,”
J. Mech. Phys. Solids
,
25
(
3
), pp.
185
202
. 10.1016/0022-5096(77)90022-9
22.
Ponte Castañeda
,
P.
, and
Willis
,
J. R.
,
1995
, “
The Effect of Spatial Distribution on the Effective Behavior of Composite Materials and Cracked Media
,”
J. Mech. Phys. Solids
,
43
(
12
), pp.
1919
1951
. 10.1016/0022-5096(95)00058-Q
23.
Tvergaard
,
V.
,
1990
, “
Material Failure by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
27
, pp.
83
151
.
24.
Suquet
,
P.
,
1987
, “Elements of Homogenization for Inelastic Solid Mechanics,”
Homogenization Techniques for Composite Media
(
Lecture Notes in Physics
),
Sanchez-Palencia
,
E.
and
Zaoui
,
A.
, eds., Vol.
272
,
Springer
,
New York
, pp.
193
278
.
25.
Ponte Castañeda
,
P.
, and
Suquet
,
P.
,
1998
, “
Nonlinear Composites
,”
Adv. Appl. Mech.
,
34
, pp.
171
302
.
26.
Segurado
,
J.
, and
Llorca
,
J.
,
2002
, “
A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites
,”
J. Mech. Phys. Solids
,
50
(
10
), pp.
2107
2121
. 10.1016/S0022-5096(02)00021-2
27.
Rintoul
,
M. D.
, and
Torquato
,
S.
,
1997
, “
Reconstruction of the Structure of Dispersions
,”
J. Colloid Inter. Sci.
,
186
(
2
), pp.
467
476
. 10.1006/jcis.1996.4675
28.
Lopez-Pamies
,
O.
,
Goudarzi
,
T.
, and
Danas
,
K.
,
2013
, “
The Nonlinear Elastic Response of Suspensions of Rigid Inclusions in Rubber. Ii. a Simple Explicit Approximation for Finite-Concentration Suspensions.
J. Mech. Phys. Solids
,
61
(
1
), pp.
19
37
. 10.1016/j.jmps.2012.08.013
29.
Schöberl
,
J.
,
1997
, “
Netgen an Advancing Front 2d/3d-Mesh Generator Based on Abstract Rules
,”
Comput. Vis. Sci.
,
1
, pp.
41
52
. 10.1007/s007910050004
30.
Oñate
,
E.
,
2009
,
Structural Analysis With the Finite Element Method, Linear Statics, Volume 1. Basis and Solids
,
Springer
,
New York
.
31.
Agoras
,
M.
, and
Ponte Castañeda
,
P.
,
2013
, “
Iterated Linear Comparison Bounds for Visco-plastic Porous Materials With “Ellipsoidal” Microstructures
,”
J. Mech. Phys. Solids.
,
61
(
3
), pp.
701
725
. 10.1016/j.jmps.2012.11.003
32.
Ponte Castañeda
,
P.
,
2016
, “
Stationary Variational Estimates for the Effective Response and Field Fluctuations in Nonlinear Composites
,”
J. Mech. Phys. Solids
,
96
, pp.
660
682
. 10.1016/j.jmps.2016.06.010
33.
Furer
,
J.
, and
Ponte Castañeda
,
P.
,
2018
, “
A Symmetric Fully Optimized Second-Order Method for Non-Linear Homogenization
,”
Z. Angew. Math. Mech.
,
98–2
, pp.
222
254
. 10.1002/zamm.201700065
34.
Milton
,
G. W.
,
2002
,
The Theory of Composites
,
Cambridge University Press
,
Cambridge, UK
.
35.
Walpole
,
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems
,”
J. Mech. Phys. Solids
,
14
(
3
), pp.
151-
162
. 10.1016/0022-5096(66)90035-4
You do not currently have access to this content.