Abstract

Upper and lower bounds for the parameters of one-dimensional theories used in the analysis of sandwich fracture specimens are derived by matching the energy release rate with two-dimensional elasticity solutions. The theory of a beam on an elastic foundation and modified beam theory are considered. Bounds are derived analytically for foundation modulus and crack length correction in single cantilever beam (SCB) sandwich specimens and verified using accurate finite element results and experimental data from the literature. Foundation modulus and crack length correction depend on the elastic mismatch between face sheets and core and are independent of the core thickness if this is above a limit value, which also depends on the elastic mismatch. The results in this paper clarify conflicting results in the literature, explain the approximate solutions, and highlight their limitations. The bounds of the model parameters can be applied directly to specimens satisfying specific geometrical/material ratios, which are given in the paper, or used to support and validate numerical calculations and define asymptotic limits.

References

1.
Charalambides
,
P. G.
,
Lund
,
J.
,
Evans
,
A. G.
, and
McMeeking
,
R. M.
,
1989
, “
A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces
,”
ASME. J. Appl. Mech. Trans.
,
56
(
1
), pp.
77
82
. 10.1115/1.3176069
2.
Sørensen
,
B. F.
,
Jørgensen
,
K.
,
Jacobsen
,
T. K.
, and
Østergaard
,
R. C.
,
2006
, “
DCB-Specimen Loaded With Uneven Bending Moments
,”
Int. J. Fract.
,
141
(
1–2
), pp.
163
176
. 10.1007/s10704-006-0071-x
3.
Lundsgaard-Larsen
,
C.
,
Sørensen
,
B. F.
,
Berggreen
,
C.
, and
Østergaard
,
R. C.
,
2008
, “
A Modified DCB Sandwich Specimen for Measuring Mixed-Mode Cohesive Laws
,”
Eng. Fract. Mech.
,
75
(
8
), pp.
2514
2530
. 10.1016/j.engfracmech.2007.07.020
4.
Kanninen
,
M. F.
,
1973
, “
An Augmented Double Cantilever Beam Model for Studying Crack Propagation and Arrest
,”
Int. J. Fract.
,
9
(
1
), pp.
83
92
. 10.1007/BF00035958
5.
Kanninen
,
M. F.
,
1974
, “
A Dynamic Analysis of Unstable Crack Propagation and Arrest in the DCB Test Specimen
,”
Int. J. Fract.
,
10
(
3
), pp.
415
430
. 10.1007/BF00035502
6.
Williams
,
J. G.
,
1989
, “
End Corrections for Orthotropic DCB Specimens
,”
Compos. Sci. Technol.
,
35
(
4
), pp.
367
376
. 10.1016/0266-3538(89)90058-4
7.
Mostovoy
,
S.
,
Crosley
,
P. B.
, and
Ripling
,
E.
,
1967
, “
Use of Crack-Line-Loaded Specimens for Measuring Plane-Strain Fracture Toughness
,”
J. Mater.
,
2
, pp.
661
681
.
8.
ASTM D5528-13
,
2013
, “
Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites
,”
ASTM International
,
West Conshohocken, PA
,
9.
li
,
X.
, and
Carlsson
,
L. A.
,
2000
, “
Elastic Foundation Analysis of Tilted Sandwich Debond (TSD) Specimen
,”
J. Sandwich Struct. Mater.
,
2
(
1
), pp.
3
32
. 10.1177/109963620000200101
10.
Avilés
,
F.
, and
Carlsson
,
L. A.
,
2008
, “
Analysis of the Sandwich DCB Specimen for Debond Characterization
,”
Eng. Fract. Mech.
,
75
(
2
), pp.
153
168
. 10.1016/j.engfracmech.2007.03.045
11.
Ratcliffe
,
J. G.
, and
Reeder
,
J. R.
,
2011
, “
Sizing a Single Cantilever Beam Specimen for Characterizing Facesheet-Core Debonding in Sandwich Structure
,”
J. Compos. Mater.
,
45
(
25
), pp.
2669
2684
. 10.1177/0021998311401116
12.
Monetto
,
I.
, and
Massabò
,
R.
,
2020
, “
An Analytical Beam Model for the Evaluation of Crack tip Root Rotations and Displacements in Orthotropic Specimens
,”
Frattura ed Integrità Strutturale
,
14
(
53
), pp.
372
393
. 10.3221/IGF-ESIS.53.29
13.
Monetto
,
I.
, and
Massabò
,
R.
,
2019
, “
An Approximate Solution for the Inverted Four-Point Bending Test in Symmetric Specimens
,”
Procedia Struct. Integrity
,
18
, pp.
657
662
. 10.1016/j.prostr.2019.08.213
14.
Thouless
,
M. D.
,
2018
, “
Shear Forces, Root Rotations, Phase Angles and Delamination of Layered Materials
,”
Eng. Fract. Mech.
,
191
(
15
), pp.
153
167
. 10.1016/j.engfracmech.2018.01.033
15.
Andrews
,
M. G.
, and
Massabò
,
R.
,
2007
, “
The Effects of Shear and Near Tip Deformations on Energy Release Rate and Mode Mixity of Edge-Cracked Orthotropic Layers
,”
Eng. Fract. Mech.
,
74
(
17
), pp.
2700
2720
. 10.1016/j.engfracmech.2007.01.013
16.
Li
,
S.
,
Wang
,
J.
, and
Thouless
,
M. D.
,
2004
, “
The Effects of Shear on Delamination in Layered Materials
,”
J. Mech. Phys. Solids
,
52
(
1
), pp.
193
214
. 10.1016/S0022-5096(03)00070-X
17.
Ustinov
,
K.
,
2019
, “
On Semi-infinite Interface Crack in Bi-material Elastic Layer
,”
Eur. J. Mech A/Solids
,
75
, pp.
56
69
. 10.1016/j.euromechsol.2019.01.013
18.
Ustinov
,
K. B.
,
Massabò
,
R.
, and
Lisovenko
,
D. S.
,
2020
, “
Orthotropic Strip With Central Semi-infinite Crack Under Arbitrary Loads Applied Far Apart From the Crack tip. Analytical Solution
,”
Eng. Fail. Anal.
,
110
, p.
104410
. 10.1016/j.engfailanal.2020.104410
19.
Saseendran
,
V.
,
Carlsson
,
L. A.
, and
Berggreen
,
C.
,
2018
, “
Shear and Foundation Effects on Crack Root Rotation and Mode-Mixity in Moment- and Force-Loaded Single Cantilever Beam Sandwich Specimen
,”
J. Compos. Mater.
,
52
(
18
), pp.
2537
2547
. 10.1177/0021998317749714
20.
Saseendran
,
V.
,
Carlsson
,
L. A.
,
Berggreen
,
C.
, and
Seneviratne
,
W.
,
2020
, “
Crack Length Correction and Root Rotation Angle in a Sandwich Single Cantilever Beam (SCB) Fracture Specimen
,”
Int. J. Lightweight Mater. Manuf.
,
3
(
4
), pp.
426
434
. 10.1016/j.ijlmm.2020.06.005
21.
Kardomateas
,
G. A.
, and
Yuan
,
Z.
,
2020
, “
Closed Form Solution for the Energy Release Rate and Mode Partitioning of the Single Cantilever Beam Sandwich Debond From an Elastic Foundation Analysis
,”
J. Sandwich Struct. Mater.
, pp.
1
24
. 10.1177/1099636220932900
22.
Yoshida
,
K.
, and
Aoki
,
T.
,
2018
, “
Beam on Elastic Foundation Analysis of Sandwich SCB Specimen for Debond Fracture Characterization
,”
Compos. Struct.
,
195
, pp.
83
92
. 10.1016/j.compstruct.2018.04.032
23.
Kardomateas
,
G. A.
,
Pichler
,
N.
, and
Yuan
,
Z.
,
2019
, “
Elastic Foundation Solution for the Energy Release Rate and Mode Partitioning of Face/Core Debonds in Sandwich Composites
,”
ASME J. Appl. Mech.
,
86
(
12
), p.
121001
. 10.1115/1.4044364
24.
Cantwell
,
W. J.
, and
Davies
,
P.
,
1994
, “
A Test Technique for Assessing Core-Skin Adhesion in Composite Sandwich Structures
,”
J. Mater. Sci. Lett.
,
13
(
3
), pp.
203
205
. 10.1007/BF00278162
25.
Cantwell
,
W. J.
, and
Davies
,
P.
,
1996
, “
A Study of Skin-Core Adhesion in Glass Fibre Reinforced Sandwich Materials
,”
Appl. Compos. Mater.
,
3
(
6
), pp.
407
420
. 10.1007/BF00133683
26.
Li
,
X.
, and
Carlsson
,
L. A.
,
1999
, “
The Tilted Sandwich Debond (TSD) Specimen for Face/Core Interface Fracture Characterization
,”
J. Sandwich Struct. Mater.
,
1
(
1
), pp.
60
75
. 10.1177/109963629900100104
27.
Saseendran
,
V.
,
Berggreen
,
C.
, and
Krueger
,
R.
,
2018
, “
Mode Mixity Analysis of Face/Core Debonds in a Single Cantilever Beam Sandwich Specimen
,”
J. Sandwich. Struct. Mater.
,
22
(
6
), pp.
1
31
. 10.1177/1099636218788223
28.
Prasad
,
S.
, and
Carlsson
,
L. A.
,
1994
, “
Debonding and Crack Kinking in Foam Core Sandwich Beams-I. Analysis of Fracture Specimens
,”
Eng. Fract. Mech.
,
47
(
6
), pp.
813
824
. 10.1016/0013-7944(94)90061-2
29.
Ratcliffe
JG.
.
Sizing Single Cantilever Beam Specimens for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure
.
NASA Technical Publication TP-2010-216169: 2010
.
30.
EASA
,
Final Report EASA_REP_RESEA_2016_2 Disbond of Sandwich Structures
,
2016
.
31.
Quispitupa
,
A.
,
Berggreen
,
C.
, and
Carlsson
,
L. A.
,
2009
, “
On the Analysis of a Mixed Mode Bending Sandwich Specimen for Debond Fracture Characterization
,”
Eng. Fract. Mech.
,
76
(
4
), pp.
594
613
. 10.1016/j.engfracmech.2008.12.008
32.
Saeid
,
A. A.
, and
Donaldson
,
S. L.
,
2016
, “
Experimental and Finite Element Evaluations of Debonding in Composite Sandwich Structure With Core Thickness Variations
,”
Adv. Mech. Eng.
,
8
(
9
), pp.
1
18
. 10.1177/1687814016667418
33.
Burlayenko
,
V. N.
,
Pietras
,
D.
, and
Sadowski
,
T.
,
2019
, “
Influence of Geometry, Elasticity Properties and Boundary Conditions on the Mode I Purity in Sandwich Composites
,”
Compos. Struct.
,
223
, p.
110942
. 10.1016/j.compstruct.2019.110942
34.
Kardomateas
,
G. A.
,
Yuan
,
Z.
, and
Carlsson
,
L. A.
,
2018
, “
Elastic Foundation Constants for Sandwich Composites
,”
AIAA J.
,
56
(
10
), pp.
4169
4179
. 10.2514/1.J057091
35.
Biot
,
M.
,
1937
, “
Bending of an Infinite Beam on an Elastic Foundation
,”
J. Appl. Mech.
, pp.
1
7
.
36.
Gdoutos
,
E. E.
,
Daniel
,
I. M.
, and
Wang
,
K. A.
,
2002
, “
Indentation Failure in Composite Sandwich Structures
,”
Exp. Mech.
,
42
(
4
), pp.
426
431
. 10.1007/BF02412148
37.
Hetényi
,
M.
,
1946
,
Beams on Elastic Foundation
,
The University of Michigan Press
,
Ann Arbor, MI
.
38.
Bosson
,
G.
,
1939
, “
The Flexure of an Infinite Elastic Strip on an Elastic Foundation
,”
Philos. Mag. Seventh Ser.
,
27
(
180
), pp.
37
50
. 10.1080/14786443908562202
39.
Bažant
,
Z.
, and
Grassl
,
P.
,
2007
, “
Size Effect of Cohesive Delamination Fracture Triggered by Sandwich Skin Wrinkling
,”
J. Appl. Mech. Trans. ASME
,
74
(
6
), pp.
1134
1141
. 10.1115/1.2722778
40.
Allen
,
H. G.
,
1969
,
Analysis and Design of Structural Sandwich Panels
,
Pergamon Press
,
London, UK
. 10.1016/c2013-0-02134-2
41.
Vonach
,
W. K.
, and
Rammerstorfer
,
F. G.
,
2000
, “
Effects of in-Plane Core Stiffness on the Wrinkling Behavior of Thick Sandwiches
,”
Acta Mech.
,
141
(
1–2
), pp.
1
10
. 10.1007/BF01176803
42.
Ustinov
,
K.
,
2015
, “
On Separation of a Layer From the Half-Plane: Elastic Fixation Conditions for a Plate Equivalent to the Layer
,”
Mech. Solids
,
50
(
1
), pp.
62
80
. 10.3103/S0025654415010070
43.
Shield
,
T. W.
, and
Kim
,
K. S.
,
1992
, “
Beam Theory Models for Thin Film Segments Cohesively Bonded to an Elastic Half Space
,”
Int. J. Solids Struct.
,
29
(
9
), pp.
1085
1103
. 10.1016/0020-7683(92)90137-I
44.
Begley
,
M. R.
, and
Hutchinson
,
J. W.
,
2017
,
The Mechanics and Reliability of Films, Multilayers and Coatings
,
Cambridge University Press
,
Cambridge, UK
. 10.1017/9781316443606
45.
Massabò
,
R.
,
Ustinov
,
K.
,
Barbieri
,
L.
, and
Berggreen
,
C.
,
2019
, “
Fracture Mechanics Solutions for Interfacial Cracks Between Compressible Thin Layers and Substrates
,”
Coatings
,
9
(
3
), pp.
1
19
. 10.3390/coatings9030152
46.
Suo
,
Z.
, and
Hutchinson
,
J. W.
,
1989
, “
Sandwich Test Specimens for Measuring Interface Crack Toughness
,”
Mater. Sci. Eng. A
,
107
, pp.
135
143
. 10.1016/0921-5093(89)90382-1
47.
Barbieri
,
L.
,
Massabò
,
R.
, and
Berggreen
,
C.
,
2018
, “
The Effects of Shear and Near Tip Deformations on Interface Fracture of Symmetric Sandwich Beams
,”
Eng. Fract. Mech.
,
201
, pp.
298
321
. 10.1016/j.engfracmech.2018.06.039
48.
Lundsgaard-Larsen
,
C.
,
Massabò
,
R.
, and
Cox
,
B. N.
,
2012
, “
On Acquiring Data for Large-Scale Crack Bridging at High Strain Rates
,”
J. Compos. Mater.
,
46
(
8
), pp.
949
971
. 10.1177/0021998311413622
49.
Massabò
,
R.
, and
Cavicchi
,
A.
,
2012
, “
Interaction Effects of Multiple Damage Mechanisms in Composite Sandwich Beams Subject to Time Dependent Loading
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
720
738
. 10.1016/j.ijsolstr.2011.11.012
50.
Berggreen
,
C.
,
Simonsen
,
B. C.
, and
Borum
,
K. K.
,
2007
, “
Experimental and Numerical Study of Interface Crack Propagation in Foam-Cored Sandwich Beams
,”
J. Compos. Mater.
,
41
(
4
), pp.
493
520
. 10.1177/0021998306065285
You do not currently have access to this content.