Abstract

Recent advances in additive manufacturing methods make it possible, for the first time, to manufacture complex micro-architectured solids that achieve desired stress versus strain responses. Here, we report experimental measurements and associated finite element (FE) calculations on the effect of strut shape upon the tensile response of two-dimensional (2D) lattices made from low-carbon steel sheets. Two lattice topologies are considered: (i) a stretching-dominated triangular lattice and (ii) a bending-dominated hexagonal lattice. It is found that strut waviness can enhance the ductility of each lattice, particularly for bending-dominated hexagonal lattices. Manufacturing imperfections such as undercuts have a small effect on the ductility of the lattices but can significantly reduce the ultimate tensile strength. FE simulations provide additional insight into these observations and are used to construct design maps to aid the design of lattices with specified strength and ductility.

References

1.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
, and
Samulski
,
E. T.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
. 10.1126/science.aaa2397
2.
Vyatskikh
,
A.
,
Delalande
,
S.
,
Kudo
,
A.
,
Zhang
,
X.
,
Portela
,
C. M.
, and
Greer
,
J. R.
,
2018
, “
Additive Manufacturing of 3D Nano-Architected Metals
,”
Nat. Commun.
,
9
(
1
), p.
593
. 10.1038/s41467-018-03071-9
3.
Phani
,
A. S.
, and
Hussein
,
M. I.
,
2017
,
Dynamics of Lattice Materials, Introduction to Lattice Materials
,
John Wiley & Sons Ltd.
,
Chichester, UK
, pp.
1
17
.
4.
Hutchinson
,
R. G.
, and
Fleck
,
N. A.
,
2006
, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids.
,
54
(
4
), pp.
756
782
. 10.1016/j.jmps.2005.10.008
5.
Tankasala
,
H. C.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2017
, “
Tensile Response of Elastoplastic Lattices At Finite Strain
,”
J. Mech. Phys. Solids.
,
109
, pp.
307
330
. 10.1016/j.jmps.2017.02.002
6.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
7.
Fleck
,
N. A.
, and
Qiu
,
X.
,
2007
, “
The Damage Tolerance of Elastic–brittle, Two-Dimensional Isotropic Lattices
,”
J. Mech. Phys. Solids.
,
55
(
3
), pp.
562
588
. 10.1016/j.jmps.2006.08.004
8.
Ronan
,
W.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2016
, “
The Tensile Ductility of Cellular Solids: The Role of Imperfections
,”
Int. J. Solids Struct.
,
102–103
, pp.
200
213
. 10.1016/j.ijsolstr.2016.10.004
9.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A. Math. Phys. Engin. Sci.
,
466
(
2121
), pp.
2495
2516
.
10.
Gu
,
H.
,
Pavier
,
M.
, and
Shterenlikht
,
A.
,
2018
, “
Experimental Study of Modulus, Strength and Toughness of 2d Triangular Lattices
,”
Int. J. Solids. Struct.
,
152
, pp.
207
216
. 10.1016/j.ijsolstr.2018.06.028
11.
Symons
,
D. D.
, and
Fleck
,
N. A.
,
2008
, “
The Imperfection Sensitivity of Isotropic Two-dimensional Elastic Lattices
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051011
. 10.1115/1.2913044
12.
Schmidt
,
I.
, and
Fleck
,
N. A.
,
2001
, “
Ductile Fracture of Two-dimensional Cellular Structures
,”
Int. J. Fract.
,
111
(
4
), pp.
327
342
. 10.1023/A:1012248030212
13.
Tankasala
,
H. C.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2015
, “
2013 Koiter Medal Paper: Crack-Tip Fields and Toughness of Two-Dimensional Elastoplastic Lattices
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091004
. 10.1115/1.4030666
14.
Romijn
,
N. E.
, and
Fleck
,
N. A.
,
2007
, “
The Fracture Toughness of Planar Lattices: Imperfection Sensitivity
,”
J. Mech. Phys. Solids.
,
55
(
12
), pp.
2538
2564
. 10.1016/j.jmps.2007.04.010
15.
Grenestedt
,
J.
,
2005
, “
On Interactions Between Imperfections in Cellular Solids
,”
J. Mater. Sci.
,
40
(
22
), pp.
5853
5857
. 10.1007/s10853-005-5019-4
16.
Liu
,
L.
,
Kamm
,
P.
,
García-Moreno
,
F.
,
Banhart
,
J.
, and
Pasini
,
D.
,
2017
, “
Elastic and Failure Response of Imperfect Three-dimensional Metallic Lattices: the Role of Geometric Defects Induced by Selective Laser Melting
,”
J. Mech. Phys. Solids
,
107
, pp.
160
184
.
17.
Tankasala
,
H. C.
, and
Fleck
,
N. A.
,
2020
, “
The Crack Growth Resistance of An Elastoplastic Lattice
,”
Int. J. Solids. Struct.
,
188–189
, pp.
233
243
. 10.1016/j.ijsolstr.2019.10.007
18.
Seiler
,
P. E.
,
Tankasala
,
H. C.
, and
Fleck
,
N. A.
,
2019
, “
The Role of Defects in Dictating the Strength of Brittle Honeycombs Made by Rapid Prototyping
,”
Acta. Mater.
,
171
, pp.
190
200
. 10.1016/j.actamat.2019.03.036
19.
Seiler
,
P. E.
,
Tankasala
,
H. C.
, and
Fleck
,
N. A.
,
2019
, “
Creep Failure of Honeycombs Made by Rapid Prototyping
,”
Acta. Mater.
,
178
, pp.
122
134
. 10.1016/j.actamat.2019.07.054
20.
Chen
,
Y.
,
Li
,
T.
,
Scarpa
,
F.
, and
Wang
,
L.
,
2017
, “
Lattice Metamaterials with Mechanically Tunable Poisson’s Ratio for Vibration Control
,”
Physical Review Applied
,
7
(
Feb
), p.
024012
. 10.1103/PhysRevApplied.7.024012
21.
Jang
,
K.-I.
,
Chung
,
H. U.
,
Xu
,
S.
,
Lee
,
C. H.
,
Luan
,
H.
,
Jeong
,
J.
,
Cheng
,
H.
,
Kim
,
G.-T.
,
Han
,
S. Y.
,
Lee
,
J. W.
,
Kim
,
J.
,
Cho
,
M.
,
Miao
,
F.
,
Yang
,
Y.
,
Jung
,
H. N.
,
Flavin
,
M.
,
Liu
,
H.
,
Kong
,
G. W.
,
Yu
,
K. J.
,
Rhee
,
S. I.
,
Chung
,
J.
,
Kim
,
B.
,
Kwak
,
J. W.
,
Yun
,
M. H.
,
Kim
,
J. Y.
,
Song
,
Y. M.
,
Paik
,
U.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Soft Network Composite Materials With Deterministic and Bio-Inspired Designs
,”
Nat. Commun.
,
6
, p.
6566
. 10.1038/ncomms7566
22.
Grenestedt
,
J. L.
,
1998
, “
Influence of Wavy Imperfections in Cell Walls on Elastic Stiffness of Cellular Solids
,”
J. Mech. Phys. Solids.
,
46
(
1
), pp.
29
50
. 10.1016/S0022-5096(97)00035-5
23.
Ma
,
Q.
,
Cheng
,
H.
,
Jang
,
K.-I.
,
Luan
,
H.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2016
, “
A Nonlinear Mechanics Model of Bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures
,”
J. Mech. Phys. Solids.
,
90
, pp.
179
202
. 10.1016/j.jmps.2016.02.012
24.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
. 10.1115/1.4034458
25.
Seiler
,
P. E.
, and
Fleck
,
N. A.
,
2020
, “
Two-Dimensional Lattice Geometries for Rapid Prototyping
,”
Zenodo
. http://dx.doi.org/10.5281/zenodo.3895882
You do not currently have access to this content.