Abstract

The entropy inequality, commonly taken as an axiom of continuum mechanics, is found to be spontaneously violated in macroscopic granular media undergoing collisional dynamics. The result falls within the fluctuation theorem of nonequilibrium thermodynamics, which is known to replace the Second Law for finite systems. This phenomenon amounts to the system stochastically displaying negative increments of entropy. The focus is on granular media in Couette flows, consisting of monosized circular disks (with 10 to 104 disks of diameters 0.01 m to 1 m) with frictional-Hookean contacts simulated by molecular dynamics accounting for micropolar effects. Overall, it is determined that the probability of negative entropy increments diminishes with the Eulerian velocity gradient increasing, while it tends to increase in a sigmoidal fashion with the Young modulus of disks increasing. This behavior is examined for a very wide range of known materials: from the softest polymers to the stiffest (i.e., carbyne). The disks’ Poisson ratio is found to have a weak effect on the probability of occurrence of negative entropy increments.

References

References
1.
Raghavan
,
B.
,
Karimi
,
P.
, and
Ostoja-Starzewski
,
M.
,
2018
, “
Stochastic Characteristics and Second Law Violations of Atomic Fluids in Couette Flow
,”
Physica A
,
496
, pp.
90
107
. 10.1016/j.physa.2017.11.007
2.
Raghavan
,
B.
, and
Ostoja-Starzewski
,
M.
,
2018
, “
On the Hydrodynamic Stability of a Lennard-Jones Molecular Fluid
,”
J. Stat. Phys.
,
177
(
1
), pp.
61
77
. 10.1007/s10955-019-02357-6
3.
Evans
,
D.
,
Cohen
,
E.
, and
Morriss
,
G.
,
1993
, “
Probability of Second Law Violations in Shearing Steady States
,”
Phys. Rev. Lett.
,
71
(
15
), pp.
2401
2402
. 10.1103/PhysRevLett.71.2401
4.
Evans
,
D.
, and
Searles
,
D.
,
2002
, “
The Fluctuation Theorem
,”
Adv. Phys.
,
51
(
7
), pp.
1529
1585
. 10.1080/00018730210155133
5.
Ostoja-Starzewski
,
M.
, and
Laudani
,
R.
,
2020
, “
Violations of the Clausius-Duhem Inequality in Couette Flows of Granular Media
,”
Proc. R. Soc. A
(in press)
. 10.26226/morressier.5f5f8e69aa777f8ba5bd6104
6.
Ostoja-Starzewski
,
M.
, and
Malyarenko
,
A.
,
2014
, “
Continuum Mechanics Beyond the Second Law of Thermodynamics
,”
Proc. R. Soc. A
,
470
, p.
20140531
. 10.1098/rspa.2014.0531
7.
Ostoja-Starzewski
,
M.
,
2016
, “
Second Law Violations, Continuum Mechanics, and Permeability
,”
Cont. Mech. Thermodyn.
,
28
, pp.
489
501
, Erratum 29, 359, 2017. 10.1007/s00161-015-0451-4
8.
Feitosa
,
K.
, and
Menon
,
N.
,
2020
, “
Fluidized Granular Medium as an Instance of the Fluctuation Theorem
,”
Phys. Rev. Lett.
,
92
(
16
), p.
164301
. 10.1103/PhysRevLett.92.164301
9.
Levitas
,
V.
,
2012
, “
Sublimation, Chemical Decomposition, and Melting Inside an Elastoplastic Material: General Continuum Thermodynamic and Kinetic Theory
,”
Int. J. Plast
,
34
, pp.
41
60
. 10.1016/j.ijplas.2012.01.006
10.
Babaei
,
H.
, and
Levitas
,
V.
,
2020
, “
Finite-Strain Scale-Free Phase-Field Approach to Multivariant Martensitic Phase Transformation With Stress-Dependent Effective Thresholds
,”
J. Mech. Phys. Solids
,
144
, p.
104114
. 10.1016/j.jmps.2020.104114
11.
Ostoja-Starzewski
,
M.
,
Kale
,
S.
,
Karimi
,
P.
,
Malyarenko
,
A.
,
Raghavan
,
B.
,
Ranganathan
,
S.
, and
Zhang
,
J.
,
2016
, “
Scaling to Rve in Random Media
,”
Adv. Appl. Mech.
,
49
, pp.
111
211
. 10.1016/bs.aams.2016.07.001
12.
Lukaszewicz
,
G.
,
1999
,
Micropolar Fluids: Theory and Applications
,
Springer
,
New York
.
13.
Atomic LAMMPS
,
2003
, Atomic, Large-Scale and Simulator, Molecular Massively Parallel, LAMMPS Users Manual.
14.
Malyarenko
,
A.
, and
Ostoja-Starzewski
,
M.
,
2019
,
Tensor-Valued Random Fields for Continuum Physics
,
Cambridge University Press
,
Cambridge, UK
.
15.
Searles
,
D.
, and
Evans
,
D.
,
2001
, “
Fluctuation Theorem for Heat Flow
,”
Int. J. Thermophys.
,
22
(
1
), pp.
123
134
. 10.1023/A:1006759703505
16.
Gneiting
,
T.
, and
Schlather
,
M.
,
2004
, “
Stochastic Models that Separate Fractal Dimension and the Hurst Effect
,”
SIAM Rev.
,
46
(
2
), pp.
269
282
. 10.1137/S0036144501394387
17.
Mateu
,
J.
,
Porcu
,
E.
, and
Nicolis
,
O.
,
2007
, “
A Note on Decoupling of Local and Global Behaviours for the Dagum Random Field
,”
Probab. Eng. Mech.
,
22
(
4
), pp.
320
329
. 10.1016/j.probengmech.2007.05.002
18.
Berg
,
C.
,
Mateu
,
J.
, and
Porcu
,
E.
,
2008
, “
The Dagum Family of Isotropic Correlation Functions
,”
Bernoulli
,
14
(
4
), pp.
1134
1149
. 10.3150/08-BEJ139
19.
Rivlin
,
R. S.
,
1997
, “Red Herrings and Sundry Unidentified Fish in Non-Linear Continuum Mechanics,”
Collected Papers of R.S. Rivlin: Volume I and II
,
G. I.
Barenblatt
, and
D. D.
Joseph
, eds.,
Springer New York
,
New York
, pp.
2765
2782
.
You do not currently have access to this content.