Abstract

The fundamental twist motion in tubes is commonly generated by torque. However, twist can also be indirectly induced by mechanical loadings (inflation/extension), growth and remodeling processes, and environmental conditions. This unusual coupling commonly originates from material anisotropy. In this study, we propose a configuration of isotropic bilayer tubes that twists upon inflation. This mechanism is based on twist incompatibility: two tubes are axially twisted in opposing directions and glued to form a bilayer tube. The residual stress that develops gives rise to deformation-induced anisotropy, which enables twist under inflation. To demonstrate the induced-twist response, we employ the neo-Hookean and the Gent models. We derive closed-form expressions for the twist angle as a function of the pressure in neo-Hookean bilayer tubes and show that a terminal angle exists in the limiting pressure. Numerical studies of bilayer Gent tubes are carried out and reveal that the lock-up effect governs the terminal twist angle. Interestingly, we find that in bilayer Gent tubes, the twist direction and handedness can be reversed upon inflation. These counter-intuitive effects, known as inversion and perversion, respectively, stem from the load-dependent variations in the ratio between the torsional stiffness of the two layers. We provide criteria that allow to program the induced twist response of bilayer tubes through the design of the properties of the two layers. This approach may be of value in the design of soft robots, artificial muscles, and soft actuators.

References

1.
Goriely
,
A.
, and
Tabor
,
M.
,
1998
, “
Spontaneous Helix Hand Reversal and Tendril Perversion in Climbing Plants
,”
Phys. Rev. Lett.
,
80
(
7
), pp.
1564
1567
. 10.1103/PhysRevLett.80.1564
2.
Gross
,
P.
,
Laurens
,
N.
,
Oddershede
,
L. B.
,
Bockelmann
,
U.
,
Peterman
,
E. J. G.
, and
Wuite
,
G. J. L.
,
2011
, “
Quantifying How DNA Stretches, Melts and Changes Twist Under Tension
,”
Nat. Phys.
,
7
(
9
), pp.
731
736
. 10.1038/nphys2002
3.
Lionnet
,
T.
,
Joubaud
,
S.
,
Lavery
,
R.
,
Bensimon
,
D.
, and
Croquette
,
V.
,
2006
, “
Wringing Out DNA
,”
Phys. Rev. Lett.
,
96
(
17
), p.
178102
. 10.1103/PhysRevLett.96.178102
4.
Roelofsen
,
P. A.
,
1950
, “
The Origin of Spiral Growth in Phycomyces Sporangiophores
,”
Recueil des Travaux Botaniques Néerlandais
,
42
(
1
), pp.
72
110
.
5.
Liu
,
D.
,
Tarakanova
,
A.
,
Hsu
,
C. C.
,
Yu
,
M.
,
Zheng
,
S.
,
Yu
,
L.
,
Liu
,
J.
,
He
,
Y.
,
Dunstan
,
D. J.
, and
Buehler
,
M. J.
,
2019
, “
Spider Dragline Silk as Torsional Actuator Driven by Humidity
,”
Sci. Adv.
,
5
(
3
), p.
eaau9183
. 10.1126/sciadv.aau9183
6.
Demirkoparan
,
H.
, and
Pence
,
T. J.
,
2008
, “
Torsional Swelling of a Hyperelastic Tube With Helically Wound Reinforcement
,”
J. Elasticity
,
92
(
1
), pp.
61
90
. 10.1007/s10659-007-9149-6
7.
Goriely
,
A.
, and
Tabor
,
M.
,
2013
, “
Rotation, Inversion and Perversion in Anisotropic Elastic Cylindrical Tubes and Membranes
,”
Proc. R. Soc. A
,
469
(
2153
), p.
20130011
. 10.1098/rspa.2013.0011
8.
Singh
,
R.
,
Kumar
,
S.
, and
Kumar
,
A.
,
2017
, “
Effect of Intrinsic Twist and Orthotropy on Extension–Twist–Inflation Coupling in Compressible Circular Tubes
,”
J. Elasticity
,
128
(
2
), pp.
175
201
. 10.1007/s10659-017-9623-8
9.
Singh
,
R.
,
Singh
,
P.
, and
Kumar
,
A.
,
2018
, “
Unusual Extension-Ttorsion–Inflation Couplings in Pressurized Thin Circular Tubes With Helical Anisotropy
,”
Math. Mech. Solids
,
24
(
9
), pp.
2694
2712
. 10.1177/1081286518779197
10.
Barreto
,
D. D.
,
Kumar
,
A.
, and
Santapuri
,
S.
,
2020
, “
Extension-Torsion-Inflation Coupling in Compressible Magnetoelastomeric Thin Tubes With Helical Magnetic Anisotropy
,”
J. Elasticity
,
140
(
2
), pp.
273
302
. 10.1007/s10659-020-09769-6
11.
Runciman
,
M.
,
Darzi
,
A.
, and
Mylonas
,
G. P.
,
2019
, “
Soft Robotics in Minimally Invasive Surgery
,”
Soft Rob.
,
6
(
4
), pp.
423
443
. 10.1089/soro.2018.0136
12.
Connolly
,
F.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2015
, “
Mechanical Programming of Soft Actuators by Varying Fiber Angle
,”
Soft Rob.
,
2
(
1
), pp.
26
32
. 10.1089/soro.2015.0001
13.
Aziz
,
S.
,
2020
, “
Torsional Artificial Muscles
,”
Mater. Horiz.
,
7
(
3
), pp.
667
693
. 10.1039/C9MH01441A
14.
Aziz
,
S.
,
Naficy
,
S.
,
Foroughi
,
J.
,
Brown
,
H. R.
, and
Spinks
,
G. M.
,
2017
, “
Effect of Anisotropic Thermal Expansion on the Torsional Actuation of Twist Oriented Polymer Fibres
,”
Polymer
,
129
, pp.
127
134
. 10.1016/j.polymer.2017.09.052
15.
Belding
,
L.
,
Baytekin
,
B.
,
Baytekin
,
H. T.
,
Rothemund
,
P.
,
Verma
,
M. S.
,
Nemiroski
,
A.
,
Sameoto
,
D.
,
Grzybowski
,
B. A.
, and
Whitesides
,
G. M.
,
2018
, “
Slit Tubes for Semisoft Pneumatic Actuators
,”
Adv. Mater.
,
30
(
9
), p.
1704446
. 10.1002/adma.201704446
16.
Shim
,
J.-E.
,
Quan
,
Y.-J.
,
Wang
,
W.
,
Rodrigue
,
H.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2015
, “
A Smart Soft Actuator Using a Single Shape Memory Alloy for Twisting Actuation
,”
Smart Mater. Struct.
,
24
(
12
), p.
125033
. 10.1088/0964-1726/24/12/125033
17.
Yan
,
J.
,
Zhang
,
X.
,
Xu
,
B.
, and
Zhao
,
J.
,
2018
, “
A New Spiral-Type Inflatable Pure Torsional Soft Actuator
,”
Soft Rob.
,
5
(
5
), pp.
527
540
. 10.1089/soro.2017.0040
18.
Sommer
,
G.
,
Schriefl
,
A.
,
Zeindlinger
,
G.
,
Katzensteiner
,
A.
,
Ainödhofer
,
H.
,
Saxena
,
A.
, and
Holzapfel
,
G. A.
,
2013
, “
Multiaxial Mechanical Response and Constitutive Modeling of Esophageal Tissues: Impact on Esophageal Tissue Engineering
,”
Acta. Biomater.
,
9
(
12
), pp.
9379
9391
. 10.1016/j.actbio.2013.07.041
19.
Wang
,
R.
, and
Gleason
,
R. L., Jr.
,
2014
, “
Residual Shear Deformations in the Coronary Artery
,”
ASME J. Biomech. Eng.
,
136
(
6
), p.
061004
. 10.1115/1.4027331
20.
Goriely
,
A.
, and
Tabor
,
M.
,
2011
, “
Spontaneous Rotational Inversion in Phycomyces
,”
Phys. Rev. Lett.
,
106
(
13
), p.
138103
. 10.1103/PhysRevLett.106.138103
21.
Yavari
,
A.
, and
Goriely
,
A.
,
2015
, “
The twist-fit problem: finite torsional and shear eigenstrains in nonlinear elastic solids
,”
Proc. R. Soc. A
,
471
(
2183
), pp.
20150596
. 10.1098/rspa.2015.0596
22.
Emuna
,
N.
, and
Durban
,
D.
,
2019
, “
Instability of Incompatible Bilayered Soft Tissues and the Role of Interface Conditions
,”
ASME J. Biomech. Eng.
,
141
(
10
), p.
101012
. 10.1115/1.4043560
23.
Emuna
,
N.
, and
Cohen
,
N.
,
2020
, “
Circumferential Instabilities in Radially Incompatible Tubes
,”
Mech. Mater.
,
147
, p.
103458
. 10.1016/j.mechmat.2020.103458
24.
Emuna
,
N.
, and
Durban
,
D.
,
2020
, “
Stability Analysis of Arteries Under Torsion
,”
ASME J. Biomech. Eng.
,
142
(
6
), p.
061011
. 10.1115/1.4046051
25.
Horgan
,
C. O.
,
2015
, “
The Remarkable Gent Constitutive Model for Hyperelastic Materials
,”
Int. J. Non-Linear Mech.
,
68
, pp.
9
16
. 10.1016/j.ijnonlinmec.2014.05.010
26.
Su
,
F.-C.
, and
Taber
,
L. A.
,
1992
, “
Torsional Boundary Layer Effects in Shells of Revolution Undergoing Large Axisymmetric Deformation
,”
Computat. Mech.
,
10
(
1
), pp.
23
37
. 10.1007/BF00370017
27.
Cohen
,
N.
,
2017
, “
Stacked Dielectric Tubes With Electromechanically Controlled Radii
,”
Int. J. Solids. Struct.
,
108
, pp.
40
48
. 10.1016/j.ijsolstr.2016.09.014
You do not currently have access to this content.