Abstract

Two types of non-holonomic constraints (imposing a prescription on velocity) are analyzed, connected to an end of a (visco)elastic rod, straight in its undeformed configuration. The equations governing the nonlinear dynamics are obtained and then linearized near the trivial equilibrium configuration. The two constraints are shown to lead to the same equations governing the linearized dynamics of the Beck (or Pflüger) column in one case and of the Reut column in the other. Although the structural systems are fully conservative (when viscosity is set to zero), they exhibit flutter and divergence instability. In addition, the Ziegler's destabilization paradox is found when dissipation sources are introduced. It follows that these features are proven to be not only a consequence of “unrealistic non-conservative loads” (as often stated in the literature); rather, the models proposed by Beck, Reut, and Ziegler can exactly describe the linearized dynamics of structures subject to non-holonomic constraints, which are made now fully accessible to experiments.

References

1.
Neimark
,
Ju. I.
, and
Fufaev
,
N. A.
,
1972
, Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, V. 33.
2.
Leipholz
,
H. H. E.
,
1980
, “
Analysis of Nonconservative, Nonholonomic System
,”
Theoretical and Applied Mechanics. Proceedings of the 15th International Congress on Theoretical and Applied Mechanics (ICTAM)
,
Toronto (Canada)
,
Aug. 17, 23, 1980
,
F. P. J.
Rimrott
, and
B.
Tabarrok
, eds.,
North-Holland Publishing Company, Amsterdam
,
New York, Oxford
, pp.
1
11
.
3.
Meijaard
,
J. P.
,
Papadopoulos
,
J. M.
,
Ruina
,
A.
, and
Schwab
,
A. L.
,
2007
, “
Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review
,”
Proc. R. Soc. A
,
463
(
2084
), pp.
1955
1982
. 10.1098/rspa.2007.1857
4.
Bottema
,
O.
,
1949
, “
On the Small Vibrations of Non-Holonomic Systems
,”
Proc. Koninklijke Nederlandse Akademie van Wetenschappen
,
1936
, pp.
848
850
.
5.
Beregi
,
S.
,
Takacs
,
D.
, and
Stepan
,
G.
,
2019
, “
Bifurcation Analysis of Wheel Shimmy With Non-Smooth Effects and Time Delay in the Tyre-Ground Contact
,”
Nonlinear Dyn.
,
98
, pp.
841
858
. 10.1007/s11071-019-05123-1
6.
Ziegler
,
H.
,
1938
, “
Die Querschwingungen Von Kraftwagenanhängern
,”
Ingenieur-Archiv
,
9
(
2
), pp.
96
108
. 10.1007/BF02084407
7.
Ziegler
,
H.
,
1977
,
Principles of Structural Stability
,
Birkhäuser
,
Basel
.
8.
Cazzolli
,
A.
,
Dal Corso
,
F.
, and
Bigoni
,
D.
,
2020
, “
Non-Holonomic Constraints Inducing Flutter Instability in Structures Under Conservative Loadings
,”
J. Mech. Phys. Solids
,
138
, p.
103919
. 10.1016/j.jmps.2020.103919
9.
Beck
,
M.
,
1952
, “
Die Knicklast Des Einseitig Eingespannten, Tangential Gedrückten Stabes
,”
Z. Angew. Math. Phys.
,
3
, pp.
225
228
. 10.1007/BF02008828
10.
Bigoni
,
D.
,
Misseroni
,
D.
,
Tommasini
,
M.
,
Kirillov
,
O.
, and
Noselli
,
G.
,
2018
, “
Detecting Singular Weak-Dissipation Limit for Flutter Onset in Reversible Systems
,”
Phys. Rev. E
,
97
, p.
023003
. 10.1103/PhysRevE.97.023003
11.
Bigoni
,
D.
,
Kirillov
,
O. N.
,
Misseroni
,
D.
,
Noselli
,
G.
, and
Tommasini
,
M.
,
2018
, “
Flutter and Divergence Instability in the Pflüger Column: Experimental Evidence of the Ziegler Destabilization Paradox
,”
J. Mech. Phys. Solids
,
116
, pp.
99
116
. 10.1016/j.jmps.2018.03.024
12.
Detinko
,
F. M.
,
2003
, “
Lumped Damping and Stability of Beck Column With a Tip Mass
,”
Int. J. Sol. Struct.
,
40
(
17
), pp.
4479
4486
. 10.1016/S0020-7683(03)00298-1
13.
Pflüger
,
A.
,
1955
, “
Zur Stabilität Des Tangential Gedrückten Stabes
,”
Z. Angew. Math. Mech.
,
35
(
5
), pp.
191
. 10.1002/zamm.19550350506
14.
Bolotin
,
V. V.
,
1963
,
Nonconservative Problems of the Theory of Elastic Stability
,
Pergamon Press
,
Oxford
.
15.
Reut
,
V. I.
,
1939
, “
About the Theory of Elastic Stability
,”
Proceedings Odessa Inst. Civil and Communal Engineering
., No. 1.
16.
Kirillov
,
O. N.
,
2005
, “
A Theory of the Destabilization Paradox in Non-conservative Systems
,”
Acta Mech.
,
174
(
3–4
), pp.
145
166
. 10.1007/s00707-004-0194-y
17.
Kirillov
,
O. N.
, and
Verhulst
,
F.
,
2010
, “
Paradoxes of Dissipation-Induced Destabilization or Who Opened Whitney's Umbrella?
,”
Z. Angew. Math. Mech.
,
90
, pp.
462
488
. 10.1002/zamm.200900315
18.
Abdullatif
,
M.
,
Mukherjee
,
R.
, and
Hellum
,
A.
,
2018
, “
Stabilizing and Destaibilizing Effects of Damping in Non-Conservative Systems: Some New Results
,”
J. Sound Vib.
,
413
, pp.
442
455
. 10.1016/j.jsv.2017.09.018
19.
Agostinelli
,
D.
,
Lucantonio
,
A.
,
Noselli
,
G.
, and
DeSimone
,
A.
,
2020
, “
Nutations in Growing Plant Shoots: The Role of Elastic Deformations Due to Gravity Loading
,”
J. Mech. Phys. Solids
,
136
, p.
103702
. 10.1016/j.jmps.2019.103702
20.
Phan
,
H.
,
Shin
,
D.
,
Heon Jeon
,
S.
,
Young Kang
,
T.
,
Han
,
P.
,
Han Kim
,
G.
,
Kook Kim
,
H.
,
Kim
,
K.
,
Hwang
,
Y.
, and
Won Hong
,
S.
,
2017
, “
Aerodynamic and Aeroelastic Flutters Driven Triboelectric Nanogenerators for Harvesting Broadband Airflow Energy
,”
Nano Energy
,
33
, pp.
476
484
. 10.1016/j.nanoen.2017.02.005
21.
Koiter
,
W. T.
,
1996
, “
Unrealistic Follower Forces
,”
J. Sound Vib.
,
194
, pp.
636
638
. 10.1006/jsvi.1996.0383
22.
Elishakoff
,
I.
,
2005
, “
Controversy Associated With the So-Called Follower Force": Critical Overview
,”
ASME Appl. Mech. Rev.
,
58
(
2
), pp.
117
142
. 10.1115/1.1849170
23.
Bigoni
,
D.
, and
Noselli
,
G.
,
2011
, “
Experimental Evidence of Flutter and Divergence Instabilities Induced by Dry Friction
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2208
2226
. 10.1016/j.jmps.2011.05.007
24.
Bigoni
,
D.
, and
Misseroni
,
D.
,
2020
, “
Structures Loaded With a Force Acting Along a Fixed Straight Line, Or the "Reut's Column Problem"
,”
J. Mech. Phys. Solids
,
134
, p.
103741
. 10.1016/j.jmps.2019.103741
25.
Bigoni
,
D.
,
2019
, Flutter from Friction in Solids and Structures. In CISM Lecture Notes No. 586
Dynamic Stability and Bifurcation in Nonconservative Mechanics
,
D.
Bigoni
, and
O. N.
Kirillov
, eds.,
Springer
, Chap. 1.
26.
Cazzolli
,
A.
, and
Dal Corso
,
F.
,
2018
, “
Snapping of Elastic Strips With Controlled Ends
,”
Int. J. Sol. Struct.
,
162
, pp.
285
303
. 10.1016/j.ijsolstr.2018.12.005
27.
Lanczos
,
C.
,
1952
,
The Variational Principles of Mechanics
,
University of Toronto Press
,
Toronto
.
28.
Domokos
,
G.
,
2002
, “The Odd Stability of the Euler Beam,”
Modern Problems of Structural Stability
, Vol.
436
,
Seyranian
,
A. P.
, and
Elishakoff
,
I.
, eds.,
International Centre for Mechanical Sciences, Springer
,
Vienna
.
29.
Tommasini
,
M.
,
Kirillov
,
O. N.
,
Misseroni
,
D.
, and
Bigoni
,
D.
,
2016
, “
The Destabilizing Effect of External Damping: Singular Flutter Boundary for the Pflüger Column With Vanishing External Dissipation
,”
J. Mech. Phys. Sol.
,
91
, pp.
204
215
. 10.1016/j.jmps.2016.03.011
You do not currently have access to this content.