Abstract

Three-dimensional coil structures assembled by mechanically guided compressive buckling have shown potential in enabling efficient thermal impedance matching of thermoelectric devices at a small characteristic scale, which increases the efficiency of power conversion, and has the potential to supply electric power to flexible bio-integrated devices. The unconventional heat dissipation behavior at the side surfaces of the thin-film coil, which serves as a “heat pump,” is strongly dependent on the geometry and the material of the encapsulating dissipation layer (e.g., polyimide). The low heat transfer coefficient of the encapsulation layer, which may damp the heat transfer for a conventional thermoelectric device, usually limits the heat transfer efficiency. However, the unconventional geometry of the coil can take advantage of the low heat transfer coefficient to increase its hot-to-cold temperature difference, and this requires further thermal analysis of the coil in order to improve its power conversion efficiency. Another challenge for the coil is that the active thin-film thermoelectric materials employed (e.g., heavily doped Silicon) are usually very brittle, with the fracture strain less than 0.1% in general while the overall device may undergo large deformation (e.g., stretched 100%). Mechanical analysis is therefore necessary to avoid failure/fracture of the thermoelectric material. In this work, we study the effect of coil geometry on both thermal and mechanical behaviors by using numerical and analytical approaches, and optimize the coil geometry to improve the device performance, and to guide its design for future applications.

References

References
1.
Pikul
,
J. H.
,
Zhang
,
H. G.
,
Cho
,
J.
,
Braun
,
P. V.
, and
King
,
W. P.
,
2013
, “
High-Power Lithium Ion Microbatteries From Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes
,”
Nat. Commun.
,
4
(
1
), pp.
1
5
. 10.1038/ncomms2747
2.
Sun
,
K.
,
Wei
,
T.-S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li-Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
. 10.1002/adma.201301036
3.
Han
,
M.
,
Wang
,
H.
,
Yang
,
Y.
,
Liang
,
C.
,
Bai
,
W.
,
Yan
,
Z.
,
Li
,
H.
,
Xue
,
Y.
,
Wang
,
X.
,
Akar
,
B.
,
Zhao
,
H.
,
Luan
,
H.
,
Lim
,
J.
,
Kandela
,
I.
,
Ameer
,
G.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J.
,
2019
, “
Three-Dimensional Piezoelectric Polymer Microsystems for Vibrational Energy Harvesting, Robotic Interfaces and Biomedical Implants
,”
Nat. Electron.
,
2
(
1
), pp.
26
35
. 10.1038/s41928-018-0189-7
4.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
, and
Kucheyev
,
S. O.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
. 10.1126/science.1252291
5.
Liu
,
Z.
,
Du
,
H.
,
Li
,
J.
,
Lu
,
L.
,
Li
,
Z.-Y.
, and
Fang
,
N. X.
,
2018
, “
Nano-kirigami With Giant Optical Chirality
,”
Sci. Adv.
,
4
(
7
), p.
eaat4436
. 10.1126/sciadv.aat4436
6.
Yan
,
D.
,
Chang
,
J.
,
Zhang
,
H.
,
Liu
,
J.
,
Song
,
H.
,
Xue
,
Z.
,
Zhang
,
F.
, and
Zhang
,
Y.
,
2020
, “
Soft Three-Dimensional Network Materials With Rational Bio-Mimetic Designs
,”
Nat. Commun.
,
11
(
1
), pp.
1
11
. 10.1038/s41467-020-14996-5
7.
Jang
,
K.-I.
,
Li
,
K.
,
Chung
,
H. U.
,
Xu
,
S.
,
Jung
,
H. N.
,
Yang
,
Y.
,
Kwak
,
J. W.
,
Jung
,
H. H.
,
Song
,
J.
,
Yang
,
C.
,
Wang
,
A.
,
Liu
,
Z.
,
Lee
,
J. Y.
,
Kim
,
B. H.
,
Kim
,
J.-H.
,
Lee
,
J.
,
Yu
,
Y.
,
Kim
,
B. J.
,
Jang
,
H.
,
Yu
,
K. J.
,
Kim
,
J.
,
Lee
,
J. W.
,
Jeong
,
J.-W.
,
Song
,
Y. M.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Self-Assembled Three Dimensional Network Designs for Soft Electronics
,”
Nat. Commun.
,
8
(
1
), pp.
1
10
. 10.1038/s41467-016-0009-6
8.
Li
,
K.
,
Cheng
,
X.
,
Zhu
,
F.
,
Li
,
L.
,
Xie
,
Z.
,
Luan
,
H.
,
Wang
,
Z.
,
Ji
,
Z.
,
Wang
,
H.
,
Liu
,
F.
,
Xue
,
Y.
,
Jiang
,
C.
,
Feng
,
X.
,
Li
,
L.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2019
, “
A Generic Soft Encapsulation Strategy for Stretchable Electronics
,”
Adv. Funct. Mater.
,
29
(
8
), pp.
1
12
. 10.1002/adfm.201806630
9.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
. 10.1115/1.4034458
10.
Pang
,
W.
,
Cheng
,
X.
,
Zhao
,
H.
,
Guo
,
X.
,
Ji
,
Z.
,
Li
,
G.
,
Liang
,
Y.
,
Xue
,
Z.
,
Song
,
H.
,
Zhang
,
F.
, and
Xu
,
Z.
,
2020
, “
Electro-Mechanically Controlled Assembly of Reconfigurable 3D Mesostructures and Electronic Devices Based on Dielectric Elastomer Platforms
,”
Nat. Sci. Rev.
,
7
(
2
), pp.
342
354
. 10.1093/nsr/nwz164
11.
Lind
,
J. U.
,
Busbee
,
T. A.
,
Valentine
,
A. D.
,
Pasqualini
,
F. S.
,
Yuan
,
H.
,
Yadid
,
M.
,
Park
,
S. -J.
,
Kotikian
,
A.
,
Nesmith
,
A. P.
,
Campbell
,
P. H.
, and
Vlassak
,
J. J.
,
2017
, “
Instrumented Cardiac Microphysiological Devices Via Multimaterial Three-Dimensional Printing
,”
Nat. Mater.
,
16
(
3
), pp.
303
308
. 10.1038/nmat4782
12.
Bolaños Quiñones
,
V. A.
,
Zhu
,
H.
,
Solovev
,
A. A.
,
Mei
,
Y.
, and
Gracias
,
D. H.
,
2018
, “
Origami Biosystems: 3D Assembly Methods for Biomedical Applications
,”
Adv. Biosyst.
,
2
(
12
), p.
1800230
. 10.1002/adbi.201800230
13.
Zhu
,
W.
,
Li
,
J.
,
Leong
,
Y. J.
,
Rozen
,
I.
,
Qu
,
X.
,
Dong
,
R.
,
Wu
,
Z.
,
Gao
,
W.
,
Chung
,
P. H.
,
Wang
,
J.
, and
Chen
,
S.
,
2015
, “
3D-printed Artificial Microfish
,”
Adv. Mater.
,
27
(
30
), pp.
4411
4417
. 10.1002/adma.201501372
14.
Truby
,
R. L.
, and
Lewis
,
J. A.
,
2016
, “
Printing Soft Matter in Three Dimensions
,”
Nature
,
540
(
7633
), pp.
371
378
. 10.1038/nature21003
15.
Skylar-Scott
,
M. A.
,
Gunasekaran
,
S.
, and
Lewis
,
J. A.
,
2016
, “
Laser-Assisted Direct Ink Writing of Planar and 3D Metal Architectures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
22
), pp.
6137
6142
. 10.1073/pnas.1525131113
16.
Zhang
,
Y.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials
,”
Nat. Rev. Mater.
,
2
(
4
), pp.
1
17
. 10.1038/natrevmats.2017.19
17.
Shenoy
,
V. B.
, and
Gracias
,
D. H.
,
2012
, “
Self-Folding Thin-film Materials: From Nanopolyhedra to Graphene Origami
,”
Mrs Bull.
,
37
(
9
), p.
847
. 10.1557/mrs.2012.184
18.
Chen
,
Z.
,
Huang
,
G.
,
Trase
,
I.
,
Han
,
X.
, and
Mei
,
Y.
,
2016
, “
Mechanical Self-assembly of a Strain-engineered Flexible Layer: Wrinkling, Rolling, and Twisting
,”
Phys. Rev. Appl.
,
5
(
1
), p.
017001
. 10.1103/PhysRevApplied.5.017001
19.
Cui
,
J.
,
Yao
,
S.
,
Huang
,
Q.
,
Adams
,
J. G.
, and
Zhu
,
Y.
,
2017
, “
Controlling the Self-Folding of a Polymer Sheet Using a Local Heater: the Effect of the Polymer–heater Interface
,”
Soft. Matter.
,
13
(
21
), pp.
3863
3870
. 10.1039/C7SM00568G
20.
Ware
,
T. H.
,
McConney
,
M. E.
,
Wie
,
J. J.
,
Tondiglia
,
V. P.
, and
White
,
T. J.
,
2015
, “
Voxelated Liquid Crystal Elastomers
,”
Science
,
347
(
6225
), pp.
982
984
. 10.1126/science.1261019
21.
Yoon
,
C.
,
Xiao
,
R.
,
Park
,
J.
,
Cha
,
J.
,
Nguyen
,
T. D.
, and
Gracias
,
D. H.
,
2014
, “
Functional Stimuli Responsive Hydrogel Devices by Self-folding
,”
Smart Mater. Struct.
,
23
(
9
), p.
094008
. 10.1088/0964-1726/23/9/094008
22.
Xia
,
Y.
,
Cedillo-Servin
,
G.
,
Kamien
,
R. D.
, and
Yang
,
S.
,
2016
, “
Guided Folding of Nematic Liquid Crystal Elastomer Sheets Into 3D Via Patterned 1D Microchannels
,”
Adv. Mater.
,
28
(
43
), pp.
9637
9643
. 10.1002/adma.201603751
23.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
,
A.
,
Liu
,
Y.
,
Xiao
,
D.
,
Zhou
,
G.
,
Lee
,
J.
,
Chung
,
H. U.
,
Cheng
,
H.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X.
,
Paik
,
U.
,
Nuzzo
,
R. G.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
. 10.1126/science.1260960
24.
Zhang
,
Y.
,
Yan
,
Z.
,
Nan
,
K.
,
Xiao
,
D.
,
Liu
,
Y.
,
Luan
,
H.
,
Fu
,
H.
,
Wang
,
X.
,
Yang
,
Q.
,
Wang
,
J.
,
Ren
,
W.
,
Si
,
H.
,
Liu
,
F.
,
Yang
,
L.
,
Li
,
H.
,
Wang
,
J.
,
Guo
,
X.
,
Luo
,
H.
,
Wang
,
L.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
A Mechanically Driven Form of Kirigami As a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
38
), pp.
11757
11764
. 10.1073/pnas.1515602112
25.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M.
,
Ou
,
D.
,
Liu
,
Y.
,
Lin
,
Q.
,
Guo
,
X.
,
Fu
,
H.
,
Xie
,
Z.
,
Gao
,
M.
,
Huang
,
Y.
,
Kim
,
J.
,
Qiu
,
Y.
,
Nan
,
K.
,
Kim
,
J.
,
Gutruf
,
P.
,
Luo
,
H.
,
Zhao
,
A.
,
Hwang
,
K.-C.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Mechanical Assembly of Complex, 3D Mesostructures From Releasable Multilayers of Advanced Materials
,”
Science Advances
,
2
(
9
), pp.
1
11
. 10.1126/sciadv.1601014
26.
Yan
,
Z.
,
Zhang
,
F.
,
Wang
,
J.
,
Liu
,
F.
,
Guo
,
X.
,
Nan
,
K.
,
Lin
,
Q.
,
Gao
,
M.
,
Xiao
,
D.
,
Shi
,
Y.
, and
Qiu
,
Y.
,
2016
, “
Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials
,”
Adv. Funct. Mater.
,
26
(
16
), pp.
2629
2639
. 10.1002/adfm.201504901
27.
Nan
,
K.
,
Luan
,
H.
,
Yan
,
Z.
,
Ning
,
X.
,
Wang
,
Y.
,
Wang
,
A.
,
Wang
,
J.
,
Han
,
M.
,
Chang
,
M.
,
Li
,
K.
,
Zhang
,
Y.
,
Huang
,
W.
,
Xue
,
Y.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Engineered Elastomer Substrates for Guided Assembly of Complex 3d Mesostructures by Spatially Nonuniform Compressive Buckling
,”
Adv. Funct. Mater.
,
27
(
1
), pp.
1
11
. 10.1002/adfm.201604281
28.
Yan
,
Z.
,
Han
,
M.
,
Shi
,
Y.
,
Badea
,
A.
,
Yang
,
Y.
,
Kulkarni
,
A.
,
Hanson
,
E.
,
Kandel
,
M. E.
,
Wen
,
X.
,
Zhang
,
F.
, and
Luo
,
Y.
,
2017
, “
Three-dimensional Mesostructures As High-Temperature Growth Templates, Electronic Cellular Scaffolds, and Self-Propelled Microrobots
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
45
), pp.
E9455
E9464
. 10.1073/pnas.1713805114
29.
Fan
,
Z.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Double Perturbation Method of Postbuckling Analysis in 2D Curved Beams for Assembly of 3D Ribbon-Shaped Structures
,”
J. Mech. Phys. Solids.
,
111
(
1
), pp.
215
238
. 10.1016/j.jmps.2017.10.012
30.
Zhao
,
H.
,
Li
,
K.
,
Han
,
M.
,
Zhu
,
F.
,
Vázquez-Guardado
,
A.
,
Guo
,
P.
,
Xie
,
Z.
,
Park
,
Y.
,
Chen
,
L.
,
Wang
,
X.
,
Luan
,
H.
,
Yang
,
Y.
,
Wang
,
H.
,
Liang
,
C.
,
Xue
,
Y.
,
Schaller
,
R. D.
,
Chanda
,
D.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2019
, “
Buckling and Twisting of Advanced Materials Into Morphable 3D Mesostructures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
27
), pp.
13239
13248
. 10.1073/pnas.1901193116
31.
Xu
,
Z.
,
Fan
,
Z.
,
Zi
,
Y.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2020
, “
An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3D Structures
,”
ASME J. Appl. Mech.
,
87
(
3
), p.
031004
. 10.1115/1.4045367
32.
Yan
,
Z.
,
Wang
,
B.
,
Wang
,
K.
,
Zhao
,
S.
,
Li
,
S.
,
Huang
,
Y.
, and
Wang
,
H.
,
2020
, “
Cellular Substrate to Facilitate Global Buckling of Serpentine Structures
,”
ASME J. Appl. Mech.
,
87
(
2
), p.
024501
. 10.1115/1.4045282
33.
Feng
,
P.
,
Yuan
,
J.
,
Huang
,
Y.
, and
Li
,
X.
,
2020
, “
Analytical Solutions for the Lateral-torsional Buckling of Serpentine Interconnects in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081005
. 10.1115/1.4047003
34.
Tang
,
R.
, and
Fu
,
H.
,
2020
, “
Mechanics of Buckled Kirigami Membranes for Stretchable Interconnects in Island-Bridge Structures
,”
ASME J. Appl. Mech.
,
87
(
5
), p.
051002
. 10.1115/1.4046003
35.
Zhao
,
S.
,
Zhu
,
F.
,
Yan
,
Z.
,
Li
,
D.
,
Xiang
,
J.
,
Huang
,
Y.
, and
Luan
,
H.
,
2020
, “
A Nonlinear Mechanics Model of Zigzag Cellular Substrates for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
6
), p.
061006
. 10.1115/1.4046662
36.
Liu
,
S.
,
Ha
,
T.
, and
Lu
,
N.
,
2019
, “
Experimentally and Numerically Validated Analytical Solutions to Nonbuckling Piezoelectric Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051010
. 10.1115/1.4042570
37.
Huang
,
Y.
,
Mu
,
Z.
,
Feng
,
P.
, and
Yuan
,
J.
,
2019
, “
Mechanics Design for Compatible Deformation of Fractal Serpentine Interconnects in High-Density Stretchable Electronics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031011
. 10.1115/1.4042290
38.
Zhao
,
J.
,
Zhang
,
Y.
,
Li
,
X.
, and
Shi
,
M.
,
2019
, “
An Improved Design of the Substrate of Stretchable Gallium Arsenide Photovoltaics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031009
. 10.1115/1.4042320
39.
Liu
,
G.
,
Sun
,
L.
, and
Su
,
Y.
,
2020
, “
Scaling Effects in the Mechanical System of the Flexible Epidermal Electronics and the Human Skin
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081007
. 10.1115/1.4047039
40.
Yin
,
S.
, and
Su
,
Y.
,
2019
, “
A Traction-free Model for the Tensile Stiffness and Bending Stiffness of Laminated Ribbons of Flexible Electronics
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051011
. 10.1115/1.4042920
41.
He
,
W.
,
Zhang
,
G.
,
Zhang
,
X.
,
Ji
,
J.
,
Li
,
G.
, and
Zhao
,
X.
,
2015
, “
Recent Development and Application of Thermoelectric Generator and Cooler
,”
Appl. Energy.
,
143
(
1
), pp.
1
25
. 10.1016/j.apenergy.2014.12.075
42.
Nan
,
K.
,
Kang
,
S. D.
,
Li
,
K.
,
Yu
,
K. J.
,
Zhu
,
F.
,
Wang
,
J.
,
Dunn
,
A. C.
,
Zhou
,
C.
,
Xie
,
Z.
,
Agne
,
M. T.
,
Wang
,
H.
,
Luan
,
H.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Snyder
,
G. J.
, and
Rogers
,
J. A.
,
2018
, “
Compliant and Stretchable Thermoelectric Coils for Energy Harvesting in Miniature Flexible Devices
,”
Science Advances
,
4
(
11
), pp.
1
7
. 10.1126/sciadv.aau5849
43.
Vedde
,
J.
, and
Gravesen
,
P.
,
1996
, “
The Fracture Strength of Nitrogen Doped Silicon Wafers
,”
Mater. Sci. Engin. B
,
36
(
1–3
), pp.
246
250
. 10.1016/0921-5107(95)01258-3
44.
Hadjistassou
,
C.
,
Kyriakides
,
E.
, and
Georgiou
,
J.
,
2013
, “
Designing High Efficiency Segmented Thermoelectric Generators
,”
Energy Convers. Manage.
,
66
(
1
), pp.
165
172
. 10.1016/j.enconman.2012.07.030
45.
Sun
,
T.
,
Zhou
,
B.
,
Zheng
,
Q.
,
Wang
,
L.
,
Jiang
,
W.
, and
Snyder
,
G. J.
,
2020
, “
Stretchable Fabric Generates Electric Power From Woven Thermoelectric Fibers
,”
Nat. Commun.
,
11
(
1
), pp.
1
10
. 10.1038/s41467-020-14399-6
46.
Love
,
A.
,
1927
,
A Treatise on the Mathematical Theory of Elasticity
, 4th ed.,
New York, NY
,
Dover
. [
Google Scholar
].
47.
Fan
,
Z.
,
Wu
,
J.
,
Ma
,
Q.
,
Liu
,
Y.
,
Su
,
Y.
, and
Hwang
,
K.-C.
,
2017
, “
Post-Buckling Analysis of Curved Beams
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
031007
. 10.1115/1.4035534
48.
Liu
,
L.
, and
Lu
,
N.
,
2016
, “
Variational Formulations, Instabilities and Critical Loadings of Space Curved Beams
,”
Int. J. Solids. Struct.
,
87
(
1
), pp.
48
60
. 10.1016/j.ijsolstr.2016.02.032
49.
Yadav
,
A.
,
Pipe
,
K.
, and
Shtein
,
M.
,
2008
, “
Fiber-based Flexible Thermoelectric Power Generator
,”
J. Power Sources.
,
175
(
2
), pp.
909
913
. 10.1016/j.jpowsour.2007.09.096
50.
Zhang
,
T.
,
Li
,
K.
,
Zhang
,
J.
,
Chen
,
M.
,
Wang
,
Z.
,
Ma
,
S.
,
Zhang
,
N.
, and
Wei
,
L.
,
2017
, “
High-performance, Flexible, and Ultralong Crystalline Thermoelectric Fibers
,”
Nano Energy
,
41
(
1
), pp.
35
42
. 10.1016/j.nanoen.2017.09.019
51.
Kummer
,
E. E.
,
1837
, “
De Integralibus Quibusdam Definitis Et Seriebus Infinitis.
,”
J. für die reine und angewandte Mathematik
,
1837
(
17
), pp.
228
242
. 10.1515/crll.1837.17.228
You do not currently have access to this content.