Abstract

The failure of materials with some sort of loading is a well-known natural phenomenon, and the reliable prediction of the failure of materials is the most important issue for many different kinds of engineering materials based on safety considerations. Classical strength theories with complex loadings are based on some sort of postulations or assumptions, and they are intrinsically empirical criteria. Due to their simplicity, classical strength theories are still widely used in engineering, and they are very easy to incorporate into any finite element code. Recently, a new methodology was proposed by the author. Instead of establishing empirical models, the material failure process was modeled as a nonequilibrium process. Then, the strength criterion was established with the rational stability analysis for the failure process. In this study, the author tried to use this idea to develop a rational thermodynamic strength theory and to make the theory easy to use in engineering, similar to the classical strength criteria. It was found that the predictions of the rational energy strength theory were very reasonable compared to the experimental data even if no postulation was taken. Through the analysis, it seemed that the strength problem could be efficiently tackled using the rational nonequilibrium energy model instead of using some sort of empirical assumptions or models.

References

1.
Ovid’Ko
,
I. A.
,
Valiev
,
R. Z.
, and
Zhu
,
Y. T.
,
2018
, “
Review on Superior Strength and Enhanced Ductility of Metallic Nanomaterials
,”
Prog. Mater. Sci.
,
94
, pp.
462
540
. 10.1016/j.pmatsci.2018.02.002
2.
Wu
,
G.
,
Chan
,
K.-C.
,
Zhu
,
L.
,
Su
,
L.
, and
Lu
,
J.
,
2017
, “
Dual-Phase Nanostructuring as a Route to High-Strength Magnesium Alloys
,”
Nature
,
545
(
7652
), pp.
80
83
. 10.1038/nature21691
3.
Richter
,
G.
,
Hillerich
,
K.
,
Gianola
,
D. S.
,
Monig
,
R.
,
Kraft
,
O.
, and
Volkert
,
C. A.
,
2009
, “
Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition
,”
Nano Lett.
,
9
(
8
), pp.
3048
3052
. 10.1021/nl9015107
4.
Rundle
,
J. B.
, and
Klein
,
W.
,
1989
, “
Nonclassical Nucleation and Growth of Cohesive Tensile Cracks
,”
Phys. Rev. Lett.
,
63
(
2
), pp.
171
174
. 10.1103/PhysRevLett.63.171
5.
Wang
,
B.
,
2020
, “
The Intrinsic Nature of Materials Failure and the Global Non-Equilibrium Energy Criterion
,”
Sci. Chin. Phys., Mech. Astron.
,
63
, pp.
124611-1
124611-12
. 10.1007/s11433-020-1610-8
6.
Kanninen
,
M. F.
, and
Popular
,
C. H.
,
1985
,
Advanced Fracture Mechanics
,
Oxford University Press
,
Oxford, UK
.
7.
Chopin
,
J.
,
Bhaskar
,
A.
,
Jog
,
A.
, and
Ponson
,
L.
,
2018
, “
Depinning Dynamics of Crack Fronts
,”
Phys. Rev. Lett.
,
121
(
23
), p.
235501
. 10.1103/PhysRevLett.121.235501
8.
Dahmen
,
K. A.
,
Ben-Zion
,
Y.
, and
Uhl
,
J. T.
,
2009
, “
Micromechanical Model for Deformation in Solids With Universal Predictions for Stress-Strain Curves and Slip Avalanches
,”
Phys. Rev. Lett.
,
102
(
17
), p.
175501
. 10.1103/PhysRevLett.102.175501
9.
Barés
,
J.
,
Barbier
,
L.
, and
Bonamy
,
D.
,
2013
, “
Crackling Versus Continuumlike Dynamics in Brittle Failure
,”
Phys. Rev. Lett.
,
111
(
5
), p.
054301
. 10.1103/PhysRevLett.111.054301
10.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
. 10.1126/science.1157996
11.
Wang
,
J.
,
Sansoz
,
F.
,
Huang
,
J.
,
Liu
,
Y.
,
Sun
,
S.
,
Zhang
,
Z.
, and
Mao
,
S. X.
,
2013
, “
Near-Ideal Theoretical Strength in Gold Nanowires Containing Angstrom Scale Twins
,”
Nat. Commun.
,
4
(
1742
), pp.
1
8
. 10.1038/ncomms2768
12.
Nie
,
A.
,
Bu
,
Y.
,
Li
,
P.
,
Zhang
,
Y.
,
Jin
,
T.
,
Liu
,
J.
,
Su
,
Z.
,
Wang
,
Y.
,
He
,
J.
,
Liu
,
Z.
,
Wang
,
H.
,
Tian
,
Y.
, and
Wang
,
H.
,
2019
, “
Approaching Diamond’s Theoretical Elasticity and Strength Limits
,”
Nat. Commun.
,
10
(
5533
), pp.
1
7
. 10.1038/s41467-019-13378-w
13.
Kondepudi
,
D.
, and
Prigogine
,
I.
,
2014
,
Modern Thermodynamics: From Heat Engines to Dissipative Structures
,
John Wiley & Sons
,
Hoboken, NJ
.
14.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Springer Science & Business Media
,
Berlin, Germany
.
15.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1981
,
Theory of Elasticity
,
Pergamon press
,
Oxford, UK
.
16.
Huang
,
K. C.
,
Xue
,
M. D.
, and
Lu
,
M. W.
,
1986
,
Tensor Analysis
,
Tsinghua University Press
,
Beijing
.
17.
Chino
,
Y.
,
Kimura
,
K.
, and
Mabuchi
,
M.
,
2009
, “
Deformation Characteristics at Room Temperature Under Biaxial Tensile Stress in Textured AZ31 Mg Alloy Sheets
,”
Acta Mater.
,
57
(
5
), pp.
1476
1485
. 10.1016/j.actamat.2008.11.033
18.
Wang
,
B.
,
1990
, “
A General Theory on Media With Randomly Distributed Inclusions: Part I—The Average Field Behaviors
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
857
862
. 10.1115/1.2897652
19.
Wang
,
B.
,
Sun
,
Q. P.
, and
Xiao
,
Z.
,
1999
, “
On the Dynamic Growth of a Spherical Inclusion With Dilatational Transformation Strain in Infinite Elastic Domain
,”
ASME J. Appl. Mech.
,
66
(
4
), pp.
879
884
. 10.1115/1.2791792
You do not currently have access to this content.