Abstract

We modify classical thin plate theory by incorporating surface effects via the Gurtin–Murdoch surface model to accommodate the mechanical behavior of thin plates at the nanoscale. We formulate the corresponding Dirichlet and Neumann boundary value problems and establish uniqueness results in the appropriate function spaces. In addition, we obtain the fundamental solution of the governing system of equations, which is central to further studies concerning well-posedness analysis of the model by the boundary integral equation method. Finally, we validate our model by comparison with results in the existing literature.

References

References
1.
Polyzos
,
I.
,
Bianchi
,
M.
,
Rizzi
,
L.
,
Koukaras
,
E. N.
,
Parthenios
,
J.
,
Papagelis
,
K.
,
Sordan
,
R.
, and
Galiotis
,
C.
,
2015
, “
Suspended Monolayer Graphene Under True Uniaxial Deformation
,”
Nanoscale
,
7
(
30
), pp.
13033
13042
. 10.1039/C5NR03072B
2.
Wang
,
J.
,
Huang
,
Z.
,
Duan
,
H.
,
Yu
,
S.
,
Feng
,
X.
,
Wang
,
G.
,
Zhang
,
W.
, and
Wang
,
T.
,
2011
, “
Surface Stress Effect in Mechanics of Nanostructured Materials
,”
Acta Mech. Solida Sin
,
24
(
1
), pp.
52
82
. 10.1016/S0894-9166(11)60009-8
3.
Withers
,
J. R.
, and
Aston
,
D. E.
,
2006
, “
Nanomechanical Measurements With AFM in the Elastic Limit
,”
Adv. Colloid. Interface. Sci.
,
120
(
1–3
), pp.
57
67
. 10.1016/j.cis.2006.03.002
4.
Jing
,
G. Y.
,
Duan
,
H. L.
,
Sun
,
X. M.
,
Zhang
,
Z. S.
,
Xu
,
J.
,
Li
,
Y. D.
,
Wang
,
J. X.
, and
Yu
,
D. P.
,
2006
, “
Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy
,”
Physical Rev. B
,
73
(
23
), pp.
235409-1
235409-6
.
5.
Yao
,
H.
,
Yun
,
G.
,
Bai
,
N.
, and
Li
,
J.
,
2012
, “
Surface Elasticity Effect on the Size-Dependent Elastic Property of Nanowires
,”
J. Appl. Phys.
,
111
(
8
), p.
083506
. 10.1063/1.3703671
6.
Zhou
,
L. G.
, and
Huang
,
H.
,
2004
, “
Are Surfaces Elastically Softer or Stiffer?
,”
Appl. Phys. Lett.
,
84
(
11
), pp.
1940
1942
. 10.1063/1.1682698
7.
Mindlin
,
R.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
417
438
. 10.1016/0020-7683(65)90006-5
8.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
. 10.1063/1.332803
9.
Li
,
C.
,
Yao
,
L.
,
Chen
,
W.
, and
Li
,
S.
,
2015
, “
Comments on Nonlocal Effects in Nano-Cantilever Beams
,”
Int. J. Eng. Sci.
,
87
, pp.
47
57
. 10.1016/j.ijengsci.2014.11.006
10.
Lim
,
C.
,
Zhang
,
G.
, and
Reddy
,
J.
,
2015
, “
A Higher-Order Nonlocal Elasticity and Strain Gradient Theory and Its Applications in Wave Propagation
,”
J. Mech. Phys. Solids
,
78
, pp.
298
313
. 10.1016/j.jmps.2015.02.001
11.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces.
,”
Arch. Ration. Mech. Anal.
,
57
, pp.
291
323
. 10.1007/BF00261375
12.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
. 10.1016/0020-7683(78)90008-2
13.
Hamilton
,
J.
, and
Wolfer
,
W.
,
2009
, “
Theories of Surface Elasticity for Nanoscale Objects
,”
Surf. Sci.
,
603
(
9
), pp.
1284
1291
. 10.1016/j.susc.2009.03.017
14.
Ru
,
C. Q.
,
2010
, “
Simple Geometrical Explanation of Gurtin-murdoch Model of Surface Elasticity With Clarification of Its Related Versions
,”
Sci. China Phys. Mech. Astronom.
,
53
(
3
), pp.
536
544
. 10.1007/s11433-010-0144-8
15.
Javili
,
A.
,
McBride
,
A.
, and
Steinmann
,
P.
,
2013
, “
Thermomechanics of Solids With Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review
,”
ASME Appl. Mech. Rev.
,
65
(
1
), p.
010802
. 10.1115/1.4023012
16.
Liu
,
J.
,
Wu
,
R.
, and
Xia
,
R.
,
2014
, “
Surface Effects at the Nanoscale Based on Gurtin’s Theory: A Review
,”
J. Mech. Behav. Mater.
,
23
(
5–6
), pp.
141
151
. 10.1515/jmbm-2014-0016
17.
Liebold
,
C.
, and
Muller
,
W. H.
,
2016
, “Applications of Higher-Order Continua to Size Effects in Bending Theory and Recent Experimental Results,”
Generalized Continua as Models for Classical and Advanced Materials Advanced Structured Materials
,
H.
Altenbach
and
S.
Forest
, eds., Vol.
42
,
Springer
,
Cham
.
18.
Wolfer
,
W. G.
,
2011
, “
Elastic Properties of Surfaces on Nanoparticles
,”
Acta Mater
,
59
(
20
), pp.
7736
7743
. 10.1016/j.actamat.2011.08.033
19.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements.
Nanotechnology
,
11
(
3
), pp.
139
147
. 10.1088/0957-4484/11/3/301
20.
Ebrahimi
,
F.
, and
Heidari
,
E.
,
2018
, “
Surface Effects on Nonlinear Vibration of Embedded Functionally Graded Nanoplates Via Higher Order Shear Deformation Plate Theory
,”
Mech. Adv. Mater. Struct.
,
26
(
8
), pp.
671
699
. 10.1080/15376494.2017.1410908
21.
Guo
,
J.-G.
, and
Zhao
,
Y.-P.
,
2005
, “
The Size-Dependent Elastic Properties of Nanofilms With Surface Effects
,”
J. Appl. Phys.
,
98
(
7
), p.
074306
. 10.1063/1.2071453
22.
Huang
,
D. W.
,
2008
, “
Size-dependent Response of Ultra-thin Films with Surface Effects
,”
Int J Solids Struct
,
45
(
2
), pp.
568
579
. 10.1016/j.ijsolstr.2007.08.006
23.
Altenbach
,
H.
,
Eremeyev
,
V. A.
, and
Morozov
,
N. F.
,
2009
, “
Linear Theory of Shells Taking Into Account Surface Stresses
,”
Dokl. Phys.
,
54
(
12
), pp.
531
535
. 10.1134/S1028335809120039
24.
Eremeyev
,
V. A.
,
Altenbach
,
H.
, and
Morozov
,
N. F.
,
2009
, “
The Influence of Surface Tension on the Effective Stiffness of Nanosize Plates
,”
Dokl. Phys.
,
54
(
2
), pp.
98
100
. 10.1134/S102833580902013X
25.
Lu
,
P.
,
He
,
L. H.
,
Lee
,
H. P.
, and
Lu
,
C.
,
2006
, “
Thin Plate Theory Including Surface Effects
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4631
4647
. 10.1016/j.ijsolstr.2005.07.036
26.
Constanda
,
C.
,
2014
,
Mathematical Methods for Elastic Plates
,
Springer-Verlag GmbH
,
London
.
27.
Constanda
,
C.
,
1978
, “
Some Comments on the Integration of Certain Systems of Partial Differential Equations in Continuum Mechanics
,”
ZAMP
,
29
(
5
), pp.
835
839
.
You do not currently have access to this content.