Abstract

Energy dissipation in polymeric composite metamaterials requires special mathematical models owing to the viscoelastic nature of their constituents, namely, the polymeric matrix, bonding agent, and local resonators. Unlike traditional composites, viscoelastic metamaterials possess a unique ability to exhibit strong wave attenuation while retaining high stiffness as a result of the “metadamping” phenomenon attributed to local resonances. The objective of this work is to investigate viscoelastic metadamping in one-dimensional multibandgap metamaterials by combining the linear hereditary theory of viscoelasticity with the Floquet-Bloch theory of wave propagation in infinite elastic media. Important distinctions between metamaterial and phononic unit cell models are explained based on the free wave approach with wavenumber-eliminated damping-frequency band structures. The developed model enables viscoelastic metadamping to be investigated by varying two independent relaxation parameters describing the viscoelasticity level in the host structure and the integrated resonators. The dispersion mechanics within high damping regimes and the effects of boundary conditions on the damped response are detailed. The results reveal that in a multiresonator cell, strategic damping placement in the individual resonators plays a profound role in shaping intermediate dispersion branches and dictating the primary and secondary frequency regions of interest, within which attenuation is most required.

References

References
1.
Park
,
J.
,
Lee
,
D.
, and
Rho
,
J.
,
2020
, “
Recent Advances in Non-Traditional Elastic Wave Manipulation by Macroscopic Artificial Structures
,”
Appl. Sci.
,
10
(
2
), p.
547
. 10.3390/app10020547
2.
Al Ba’ba’a
,
H.
,
Attarzadeh
,
M.
, and
Nouh
,
M.
,
2018
, “
Experimental Evaluation of Structural Intensity in 2d Plate-type Locally Resonant Elastic Metamaterials
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
041005
. 10.1115/1.4039042
3.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
. 10.1115/1.4004592
4.
Hu
,
G.
,
Tang
,
L.
,
Xu
,
J.
,
Lan
,
C.
, and
Das
,
R.
,
2019
, “
Metamaterial With Local Resonators Coupled by Negative Stiffness Springs for Enhanced Vibration Suppression
,”
ASME J. Appl. Mech.
,
86
(
8
), p.
081009
. 10.1115/1.4043827
5.
Chen
,
J.-S.
, and
Chien
,
I.
,
2017
, “
Dynamic Behavior of a Metamaterial Beam With Embedded Membrane-Mass Structures
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121007
. 10.1115/1.4038146
6.
Al Ba’ba’a
,
H.
,
Nouh
,
M.
, and
Singh
,
T.
,
2017
, “
Formation of Local Resonance Band Gaps in Finite Acoustic Metamaterials: A Closed-Form Transfer Function Model
,”
Sound Vib J
,
410
, pp.
429
446
. 10.1016/j.jsv.2017.08.009
7.
Baz
,
A.
,
2019
, “
Active Acoustic Metamaterial With Tunable Effective Density Using a Disturbance Rejection Controller
,”
J. Appl. Phys.
,
125
(
7
), p.
074503
. 10.1063/1.5063000
8.
He
,
Z.-H.
,
Wang
,
Y.-Z.
, and
Wang
,
Y.-S.
,
2019
, “
Active Feedback Control on Sound Radiation of Elastic Wave Metamaterials
,”
AIAA J.
,
57
(
10
), pp.
4536
4547
. 10.2514/1.J058068
9.
Rong
,
J.
, and
Ye
,
W.
,
2019
, “
Topology Optimization Design Scheme for Broadband Non-Resonant Hyperbolic Elastic Metamaterials
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
819
836
. 10.1016/j.cma.2018.10.034
10.
Vila
,
J.
,
Paulino
,
G. H.
, and
Ruzzene
,
M.
,
2019
, “
Role of Nonlinearities in Topological Protection: Testing Magnetically Coupled Fidget Spinners
,”
Phys. Rev. B
,
99
(
12
), p.
125116
. 10.1103/PhysRevB.99.125116
11.
Aladwani
,
A.
,
Almandeel
,
A.
, and
Nouh
,
M.
,
2019
, “
Fluid-Structural Coupling in Metamaterial Plates for Vibration and Noise Mitigation in Acoustic Cavities
,”
Int. J. Mech. Sci.
,
152
, pp.
151
166
. 10.1016/j.ijmecsci.2018.12.048
12.
Attarzadeh
,
M.
,
Al Ba’ba’a
,
H.
, and
Nouh
,
M.
,
2018
, “
On the Wave Dispersion and Non-Reciprocal Power Flow in Space-Time Traveling Acoustic Metamaterials
,”
Appl. Acoustics
,
133
, pp.
210
214
. 10.1016/j.apacoust.2017.12.028
13.
Serra-Garcia
,
M.
,
Peri
,
V.
,
Süsstrunk
,
R.
,
Bilal
,
O. R.
,
Larsen
,
T.
,
Villanueva
,
L. G.
, and
Huber
,
S. D.
,
2018
, “
Observation of a Phononic Quadrupole Topological Insulator
,”
Nature
,
555
(
7696
), pp.
342
345
. 10.1038/nature25156
14.
Verdier
,
M.
,
Lacroix
,
D.
, and
Termentzidis
,
K.
,
2017
, “
Heat Transport in Phononic-Like Membranes: Modeling and Comparison With Modulated Nano-Wires
,”
Int. J. Heat. Mass. Transfer.
,
114
, pp.
550
558
. 10.1016/j.ijheatmasstransfer.2017.06.067
15.
Sena-Junior
,
M. I.
,
Lima
,
L. R.
, and
Lewenkopf
,
C. H.
,
2017
, “
Phononic Heat Transport in Nanomechanical Structures: Steady-State and Pumping
,”
J. Phys. A: Math. Theor.
,
50
(
43
), p.
435202
. 10.1088/1751-8121/aa8c81
16.
Attarzadeh
,
M.
,
Callanan
,
J.
, and
Nouh
,
M.
,
2020
, “
Experimental Observation of Nonreciprocal Waves in a Resonant Metamaterial Beam
,”
Phys. Rev. Appl.
,
13
(
2
), p.
021001
. 10.1103/PhysRevApplied.13.021001
17.
Moore
,
K. J.
,
Bunyan
,
J.
,
Tawfick
,
S.
,
Gendelman
,
O. V.
,
Li
,
S.
,
Leamy
,
M.
, and
Vakakis
,
A. F.
,
2018
, “
Nonreciprocity in the Dynamics of Coupled Oscillators With Nonlinearity, Asymmetry, and Scale Hierarchy
,”
Phys. Rev. E
,
97
(
1
), p.
012219
. 10.1103/PhysRevE.97.012219
18.
Al Ba’ba’a
,
H.
, and
Nouh
,
M.
,
2017
, “
An Investigation of Vibrational Power Flow in One-Dimensional Dissipative Phononic Structures
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021003
. 10.1115/1.4035108
19.
Al Ba’ba’a
,
H. B.
, and
Nouh
,
M.
,
2017
, “
Mechanics of Longitudinal and Flexural Locally Resonant Elastic Metamaterials Using a Structural Power Flow Approach
,”
Int. J. Mech. Sci.
,
122
, pp.
341
354
. 10.1016/j.ijmecsci.2017.01.034
20.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2013
, “
Metadamping: An Emergent Phenomenon in Dissipative Metamaterials
,”
J. Sound. Vib.
,
332
(
20
), pp.
4767
4774
. 10.1016/j.jsv.2013.04.041
21.
Frazier
,
M. J.
, and
Hussein
,
M. I.
,
2015
, “
Viscous-to-Viscoelastic Transition in Phononic Crystal and Metamaterial Band Structures
,”
J. Acoust. Soc. Am.
,
138
(
5
), pp.
3169
3180
. 10.1121/1.4934845
22.
DePauw
,
D.
,
Al Ba’ba’a
,
H.
, and
Nouh
,
M.
,
2018
, “
Metadamping and Energy Dissipation Enhancement Via Hybrid Phononic Resonators
,”
Extreme Mech. Lett.
,
18
, pp.
36
44
. 10.1016/j.eml.2017.11.002
23.
Aladwani
,
A.
, and
Nouh
,
M.
,
2020
, “
Mechanics of Metadamping in Flexural Dissipative Metamaterials: Analysis and Design in Frequency and Time Domains
,”
Int. J. Mech. Sci.
,
173
, p.
105459
. 10.1016/j.ijmecsci.2020.105459
24.
Cajić
,
M.
,
Karličić
,
D.
,
Paunović
,
S.
, and
Adhikari
,
S.
,
2020
, “
A Fractional Calculus Approach to Metadamping in Phononic Crystals and Acoustic Metamaterials
,”
Theoretical and Applied Mechanics
,
47
, p.
3
.
25.
Bacquet
,
C. L.
, and
Hussein
,
M. I.
,
2018
, “
Dissipation Engineering in Metamaterials by Localized Structural Dynamics
,”
arXiv preprint
. https://arxiv.org/abs/1809.04509
26.
Bacquet
,
C. L.
,
Al Ba’ba’a
,
H.
,
Frazier
,
M. J.
,
Nouh
,
M.
, and
Hussein
,
M. I.
,
2018
, “
Chapter Two-Metadamping: Dissipation Emergence in Elastic Metamaterials
,”
Adv. Appl. Mech.
,
51
, pp.
115
164
.
27.
Treviso
,
A.
,
Van Genechten
,
B.
,
Mundo
,
D.
, and
Tournour
,
M.
,
2015
, “
Damping in Composite Materials: Properties and Models
,”
Compos. Part B: Eng.
,
78
, pp.
144
152
. 10.1016/j.compositesb.2015.03.081
28.
Zhou
,
X.
,
Yu
,
D.
,
Shao
,
X.
,
Zhang
,
S.
, and
Wang
,
S.
,
2016
, “
Research and Applications of Viscoelastic Vibration Damping Materials: A Review
,”
Composite Struct.
,
136
, pp.
460
480
. 10.1016/j.compstruct.2015.10.014
29.
Chandra
,
R.
,
Singh
,
S.
, and
Gupta
,
K.
,
1999
, “
Damping Studies in Fiber-Reinforced Composites—A Review
,”
Composite struct.
,
46
(
1
), pp.
41
51
. 10.1016/S0263-8223(99)00041-0
30.
Chandra
,
R.
,
Singh
,
S.
, and
Gupta
,
K.
,
2003
, “
A Study of Damping in Fiber-Reinforced Composites
,”
J. Sound. Vib.
,
262
(
3
), pp.
475
496
. 10.1016/S0022-460X(03)00107-X
31.
Zhou
,
X.
,
Yu
,
D.
,
Shao
,
X.
,
Zhang
,
S.
, and
Wang
,
S.
,
2016
, “
Asymptotic Analysis on Flexural Dynamic Characteristics for a Laminated Composite Plate With Embedded and Perforated Periodically Viscoelastic Damping Material Core
,”
Composite Struct.
,
154
, pp.
616
633
. 10.1016/j.compstruct.2016.07.054
32.
Biswal
,
D. K.
, and
Mohanty
,
S. C.
,
2019
, “
Free Vibration Study of Multilayer Sandwich Spherical Shell Panels With Viscoelastic Core and Isotropic/laminated Face Layers
,”
Composites Part B: Eng.
,
159
, pp.
72
85
. 10.1016/j.compositesb.2018.09.075
33.
Permoon
,
M.
,
Shakouri
,
M.
, and
Haddadpour
,
H.
,
2019
, “
Free Vibration Analysis of Sandwich Conical Shells With Fractional Viscoelastic Core
,”
Composite Struct.
,
214
, pp.
62
72
. 10.1016/j.compstruct.2019.01.082
34.
Vieira
,
F. S.
, and
Araújo
,
A. L.
,
2020
, “
Optimization and Modelling Methodologies for Electro-Viscoelastic Sandwich Design for Noise Reduction
,”
Composite Struct.
,
235
, p.
111778
. 10.1016/j.compstruct.2019.111778
35.
Gibson
,
R. F.
,
2016
,
Principles of Composite Material Mechanics
,
CRC press
,
Boca Raton, FL
.
36.
Maheri
,
M.
,
2011
, “
The Effect of Layup and Boundary Conditions on the Modal Damping of FRP Composite Panels
,”
J. Compos. Mater.
,
45
(
13
), pp.
1411
1422
. 10.1177/0021998310382314
37.
Javidan
,
M. M.
, and
Kim
,
J.
,
2020
, “
Experimental and Numerical Sensitivity Assessment of Viscoelasticity for Polymer Composite Materials
,”
Sci. Rep.
,
10
(
1
), pp.
1
9
. 10.1038/s41598-020-57552-3
38.
Kumar
,
N.
, and
Singh
,
S.
,
2010
, “
Experimental Study on Vibration and Damping of Curved Panel Treated With Constrained Viscoelastic Layer
,”
Composite struct.
,
92
(
2
), pp.
233
243
. 10.1016/j.compstruct.2009.07.011
39.
Krushynska
,
A.
,
Kouznetsova
,
V.
, and
Geers
,
M.
,
2016
, “
Visco-Elastic Effects on Wave Dispersion in Three-Phase Acoustic Metamaterials
,”
J. Mech. Phys. Solids.
,
96
, pp.
29
47
. 10.1016/j.jmps.2016.07.001
40.
Pichard
,
H.
, and
Torrent
,
D.
,
2016
, “
Dynamic Homogenization of Viscoelastic Phononic Metasolids
,”
AIP Advances
,
6
(
12
), p.
121705
. 10.1063/1.4968618
41.
Baz
,
A. M.
,
2019
,
Active and Passive Vibration Damping
,
John Wiley & Sons
,
New York
.
42.
Golla
,
D.
, and
Hughes
,
P.
,
1985
, “
Dynamics of Viscoelastic Structures—A Time-Domain, Finite Element Formulation
,”
J. Appl. Mech.
,
52
(
4
), pp.
897
906
. 10.1115/1.3169166
43.
Lesieutre
,
G.
, and
Bianchini
,
E.
,
1995
, “
Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields
,”
ASME J. Vib. Acoust.
,
117
(
4
), pp.
424
430
. 10.1115/1.2874474
44.
Wagner
,
N.
, and
Adhikari
,
S.
,
2003
, “
Symmetric State-Space Method for a Class of Nonviscously Damped Systems
,”
AIAA J.
,
41
(
5
), pp.
951
956
. 10.2514/2.2032
45.
Adhikari
,
S.
,
2010
, “
A Reduced Second-Order Approach for Linear Viscoelastic Oscillators
,”
ASME J. Appl. Mech.
,
77
(
4
), p.
041003
. 10.1115/1.4000913
46.
Biot
,
M. A.
,
1955
, “
Variational Principles in Irreversible Thermodynamics With Application to Viscoelasticity
,”
Phys. Rev.
,
97
(
6
), p.
1463
. 10.1103/PhysRev.97.1463
47.
McTavish
,
D.
, and
Hughes
,
P.
,
1993
, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vib. Acoust.
,
115
(
1
), pp.
103
110
. 10.1115/1.2930302
48.
Lesieutre
,
G. A.
, and
Mingori
,
D. L.
,
1990
, “
Finite Element Modeling of Frequency-Dependent Material Damping Using Augmenting Thermodynamic Fields
,”
J. Guid., Control, Dyn.
,
13
(
6
), pp.
1040
1050
. 10.2514/3.20577
49.
Chakraborty
,
A.
,
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
,
2002
, “
Finite Element Analysis of Free Vibration and Wave Propagation in Asymmetric Composite Beams With Structural Discontinuities
,”
Composite Struct.
,
55
(
1
), pp.
23
36
. 10.1016/S0263-8223(01)00130-1
50.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
,
Boca Raton, FL
You do not currently have access to this content.