Abstract

Arranging inerter arrays in designing metamaterials can achieve low-frequency vibration suppression even with a small configuration mass. In this work, we investigate flexural wave bandgap properties of an elastic metamaterial plate with periodic arrays of inerter-based dynamic vibration absorbers (IDVAs). By extending the plane wave expansion (PWE) method, the inertant elastic metamaterial plate is explicitly formulated in which the interactions of the attached IDVAs and the host plate are considered. Due to the additional degree-of-freedom induced by each IDVA, multiple band gaps are obtained. Along the ΓX direction, the inertant elastic metamaterial plate exhibits two locally resonant (LR) band gaps and one Bragg (BG) band gap. In contrast, along the ΓM direction, two adjacent LR band gaps are obtained. Detailed parametric analyses are conducted to investigate the relationships between the flexural wave bandgap properties and the structural inertant parameters. With a dissipative mechanism added to the IDVAs, extremely wide band gaps in different directions can be further generated. Finally, by adopting an effective added mass technique in the finite element method, displacement transmission and vibration modes of a finite inertant elastic metamaterial plate are obtained. Our investigation indicates that the proposed inertant elastic metamaterial plate has extra-wide low-frequency flexural band gaps and therefore has potential applications in engineering vibration prohibition.

References

References
1.
Liu
,
Z.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science.
,
289
(
5485
), pp.
1734
1736
. 10.1126/science.289.5485.1734
2.
Bilal
,
O. R.
, and
Hussein
,
M. I.
,
2013
, “
Trampoline Metamaterial: Local Resonance Enhancement by Springboards
,”
Appl. Phys. Lett.
,
103
(
111901
), pp.
1
4
.
3.
Oudich
,
M.
,
Li
,
Y.
,
Assouar
,
B. M.
, and
Hou
,
Z.
,
2010
, “
A Sonic Band gap Based on the Locally Resonant Phononic Plates with Stubs
,”
New J. Phys.
,
12
(
8
), p.
83049
. 10.1088/1367-2630/12/8/083049
4.
Tan
,
K. T.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2012
, “
Optimizing the Band gap of Effective Mass Negativity in Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
101
(
24
), p.
241902
. 10.1063/1.4770370
5.
Sun
,
H. X.
,
Zhang
,
S. Y.
, and
Shui
,
X. J.
,
2012
, “
A Tunable Acoustic Diode Made by a Metal Plate With Periodical Structure
,”
Appl. Phys. Lett.
,
100
(
10
), p.
104301
.
6.
Gu
,
Y.
,
Luo
,
X.
, and
Ma
,
H.
,
2009
, “
Low Frequency Elastic Wave Propagation in 2D Locally Resonant Phononic Crystal With Asymmetric Resonator
,”
J. Appl. Phys.
,
105
(
4
), p.
1734
.
7.
Xiao
,
Y.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2013
, “
Flexural Wave Propagation in Beams With Periodically Attached Vibration Absorbers: Band-Gap Behavior and Band Formation Mechanisms
,”
J. Sound Vib.
,
332
(
4
), pp.
867
893
. 10.1016/j.jsv.2012.09.035
8.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Flexural Wave Band Gaps in Locally Resonant Thin Plates With Periodically Attached Spring–Mass Resonators
,”
J. Phys. D: Appl. Phys.
,
45
(
19
), pp.
195401
195412(12)
. 10.1088/0022-3727/45/19/195401
9.
Lv
,
X. F.
,
Xu
,
S. F.
,
Huang
,
Z. L.
, and
Chuang
,
K. C.
,
2019
, “
A Shape Memory Alloy-Based Tunable Phononic Crystal Beam Attached With Concentrated Masses
,”
Phys. Lett. A.
,
384
(
2
), p.
126056
. 10.1016/j.physleta.2019.126056
10.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2009
, “
Wave Attenuation Mechanism in an Acoustic Metamaterial With Negative Effective Mass Density
,”
New J. Phys.
,
11
(
1
), p.
13003
. 10.1088/1367-2630/11/1/013003
11.
Manimala
,
J. M.
, and
Sun
,
C. T.
,
2014
, “
Microstructural Design Studies for Locally Dissipative Acoustic Metamaterials
,”
J. Appl. Phys.
,
115
(
2
), p.
23518
. 10.1063/1.4861632
12.
Tian
,
Y.
,
Wu
,
J. H.
,
Li
,
H.
,
Gu
,
C.
,
Yang
,
Z.
,
Zhao
,
Z.
, and
Lu
,
K.
,
2019
, “
Elastic Wave Propagation in the Elastic Metamaterials Containing Parallel Multi-Resonators
,”
J. Phys. D: Appl. Phys.
,
52
(
39
), p.
395301
. 10.1088/1361-6463/ab2dba
13.
Barnhart
,
M. V.
,
Xu
,
X.
,
Chen
,
Y.
,
Zhang
,
S.
,
Song
,
J.
, and
Huang
,
G.
,
2019
, “
Experimental Demonstration of a Dissipative Multi-Resonator Metamaterial for Broadband Elastic Wave Attenuation
,”
J. Sound. Vib.
,
438
(
6
), pp.
1
12
. 10.1016/j.jsv.2018.08.035
14.
Yilmaz
,
C.
, and
Hulbert
,
G. M.
,
2010
, “
Theory of Phononic Gaps Induced by Inertial Amplification in Finite Structures
,”
Phys. Lett. A.
,
374
(
34
), pp.
3576
3584
. 10.1016/j.physleta.2010.07.001
15.
Taniker
,
S.
, and
Yilmaz
,
C.
,
2017
, “
Generating Ultra Wide Vibration Stop Bands by a Novel Inertial Amplification Mechanism Topology With Flexure Hinges
,”
Int. J. Solids Struct.
,
106
(
107
), pp.
129
138
. 10.1016/j.ijsolstr.2016.11.026
16.
Frandsen
,
N. M. M.
,
Bilal
,
O. R.
,
Jensen
,
J. S.
, and
Hussein
,
M. I.
,
2016
, “
Inertial Amplification of Continuous Structures: Large Band Gaps From Small Masses
,”
J. Appl. Phys.
,
119
(
12
), p.
124902
. 10.1063/1.4944429
17.
Yuksel
,
O.
, and
Yilmaz
,
C.
,
2015
, “
Shape Optimization of Phononic Band gap Structures Incorporating Inertial Amplification Mechanisms
,”
J. Sound Vib.
,
355
(
27
), pp.
232
245
. 10.1016/j.jsv.2015.06.016
18.
Li
,
J.
, and
Li
,
S.
,
2018
, “
Generating Ultra Wide Low-Frequency gap for Transverse Wave Isolation via Inertial Amplification Effects
,”
Phys. Lett. A
,
382
(
5
), pp.
241
247
. 10.1016/j.physleta.2017.11.023
19.
Orta
,
A. H.
, and
Yilmaz
,
C.
,
2018
, “
Inertial Amplification Induced Phononic Band Gaps Generated by a Compliant Axial to Rotary Motion Conversion Mechanism
,”
J. Sound Vib.
,
439
(
20
), pp.
329
. 10.1016/j.jsv.2018.10.014
20.
Acar
,
G.
, and
Yilmaz
,
C.
,
2013
, “
Experimental and Numerical Evidence for the Existence of Wide and Deep Phononic Gaps Induced by Inertial Amplification in Two-Dimensional Solid Structures
,”
J. Sound Vib.
,
332
(
24
), pp.
6389
6404
. 10.1016/j.jsv.2013.06.022
21.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control.
,
47
(
10
), pp.
1648
1662
. 10.1109/TAC.2002.803532
22.
Smith
,
M. C.
, and
Wang
,
F. C.
,
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Veh. Syst. Dyn.
,
42
(
4
), pp.
235
257
. 10.1080/00423110412331289871
23.
Evangelou
,
S.
,
Limebeer
,
D.
,
Sharp
,
R.
, and
Smith
,
M.
,
2006
, “
Control of Motorcycle Steering Instabilities
,”
Control Syst., IEEE.
,
26
(
5
), pp.
78
88
. 10.1109/MCS.2006.1700046
24.
Ge
,
Z.
, and
Wang
,
W.
,
2018
, “
Modeling, Testing, and Characteristic Analysis of a Planetary Flywheel Inerter
,”
Shock Vib.
,
2018
, p.
12
.
25.
Wang
,
F.
,
Hong
,
M.
, and
Lin
,
T.
,
2010
, “
Designing and Testing a Hydraulic Inerter
,”
Proc. Ins. Mech Eng., Part C: J. Mech. Eng. Sci.
,
225
(
1
), pp.
66
72
. 10.1243/09544062JMES2199
26.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthq. Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
. 10.1002/eqe.1138
27.
Scheibe
,
F.
, and
Smith
,
M. C.
,
2009
, “
Analytical Solutions for Optimal Ride Comfort and Tyre Grip for Passive Vehicle Suspensions
,”
Veh. Syst. Dyn.
,
47
(
10
), pp.
1229
1252
. 10.1080/00423110802588323
28.
Hu
,
Y.
,
Chen
,
M. Z. Q.
, and
Shu
,
Z.
,
2014
, “
Passive Vehicle Suspensions Employing Inerters With Multiple Performance Requirements
,”
J. Sound Vib.
,
333
(
8
), pp.
2212
2225
. 10.1016/j.jsv.2013.12.016
29.
Zhang
,
X.-J.
,
Ahmadian
,
M.
, and
Guo
,
K.
,
2012
, “
On the Benefits of Semi-Active Suspensions with Inerters
,”
Shock Vib.
,
19
(
3
), pp.
257
272
. 10.1155/2012/640275
30.
Wang
,
F.
,
Liao
,
M.
,
Liao
,
B.
,
Su
,
W.
, and
Chan
,
H.
,
2009
, “
The Performance Improvements of Train Suspension Systems With Mechanical Networks Employing Inerters
,”
Veh. Syst. Dyn.
,
47
(
7
), pp.
805
830
. 10.1080/00423110802385951
31.
Jiang
,
J. Z.
,
Matamoros-Sanchez
,
A. Z.
,
Goodall
,
R. M.
, and
Smith
,
M. C.
,
2012
, “
Passive Suspensions Incorporating Inerters for Railway Vehicles
,”
Veh. Syst. Dyn.
,
50
(
sup1
), pp.
263
276
. 10.1080/00423114.2012.665166
32.
Evangelou
,
S.
,
Limebeer
,
D. J. N.
,
Sharp
,
R. S.
, and
Smith
,
M. C.
,
2007
, “
Mechanical Steering Compensation for High-Performance Motorcycles
,”
J Appl. Mech.
,
74
(
2
), pp.
332
346
. 10.1115/1.2198547
33.
Wang
,
F.
,
Hong
,
M.
, and
Chen
,
C.
,
2009
, “
Building Suspensions With Inerters
,”
Proc. Ins. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
224
(
8
), pp.
1605
1616
. 10.1243/09544062JMES1909
34.
De Domenico
,
D.
,
Deastra
,
P.
,
Ricciardi
,
G.
,
Sims
,
N. D.
, and
Wagg
,
D. J.
,
2019
, “
Novel Fluid Inerter Based Tuned Mass Dampers for Optimised Structural Control of Base-Isolated Buildings
,”
J. Franklin Ins.
,
356
(
14
), pp.
7626
7649
. 10.1016/j.jfranklin.2018.11.012
35.
Luo
,
Y.
,
Sun
,
H.
,
Wang
,
X.
,
Zuo
,
L.
, and
Chen
,
N.
,
2017
, “
Wind Induced Vibration Control and Energy Harvesting of Electromagnetic Resonant Shunt Tuned Mass-Damper-Inerter for Building Structures
,”
Shock Vib.
,
2017
, p.
13
.
36.
Jin
,
X.
,
Chen
,
M. Z. Q.
, and
Huang
,
Z.
,
2016
, “
Minimization of the Beam Response Using Inerter-Based Passive Vibration Control Configurations
,”
Int. J. Mech. Sci.
,
119
, pp.
80
87
. 10.1016/j.ijmecsci.2016.10.007
37.
Chen
,
H.-Y.
,
Mao
,
X.-Y.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2020
, “
Elimination of Multimode Resonances of Composite Plate by Inertial Nonlinear Energy Sinks
,”
Mech. Syst. Sign. Proc.
,
135
, p.
106383
. 10.1016/j.ymssp.2019.106383
38.
Kulkarni
,
P. P.
, and
Manimala
,
J. M.
,
2016
, “
Longitudinal Elastic Wave Propagation Characteristics of Inertant Acoustic Metamaterials
,”
J. Appl. Phys.
,
119
(
24
), p.
245101
. 10.1063/1.4954074
39.
Fang
,
X.
,
Chuang
,
K.
,
Jin
,
X.
, and
Huang
,
Z.
,
2018
, “
Band-Gap Properties of Elastic Metamaterials With Inerter-Based Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071010
. 10.1115/1.4039898
40.
Al Ba’Ba’a
,
H.
,
Depauw
,
D.
,
Singh
,
T.
, and
Nouh
,
M.
,
2018
, “
Dispersion Transitions and Pole-Zero Characteristics of Finite Inertially Amplified Acoustic Metamaterials
,”
J. Appl. Phys.
,
123
(
10
), p.
105106
. 10.1063/1.5019703
41.
Madhamshetty
,
K.
, and
Manimala
,
J. M.
,
2019
, “
Extraordinary Wave Manipulation Characteristics of Nonlinear Inertant Acoustic Metamaterials
,”
J. Franklin Inst.
,
356
(
14
), pp.
7731
7753
. 10.1016/j.jfranklin.2019.02.019
42.
Sun
,
C. Y.
,
Hsu
,
J. C.
, and
Wu
,
T. T.
,
2010
, “
Resonant Slow Modes in Phononic Crystal Plates with Periodic Membranes
,”
Appl. Phys. Lett.
,
97
(
031902
), pp.
1
3
.
43.
Peng
,
H.
,
Frank Pai
,
P.
, and
Deng
,
H.
,
2015
, “
Acoustic Multi-Stopband Metamaterial Plates Design for Broadband Elastic Wave Absorption and Vibration Suppression
,”
Int. J. Mech. Sci.
,
103
, pp.
104
114
. 10.1016/j.ijmecsci.2015.08.024
44.
Huang
,
Y.
,
Li
,
J.
,
Chen
,
W.
, and
Bao
,
R.
,
2019
, “
Tunable Bandgaps in Soft Phononic Plates With Spring-Mass-Like Resonators
,”
Int. J Mech. Sci
,
151
, pp.
300
313
. 10.1016/j.ijmecsci.2018.11.029
45.
Yan
,
X.
,
Zhu
,
R.
,
Huang
,
G.
, and
Yuan
,
F.-G.
,
2013
, “
Focusing Guided Waves Using Surface Bonded Elastic Metamaterials
,”
Appl. Phys. Lett.
,
103
(
12
), p.
121901
. 10.1063/1.4821258
46.
Chen
,
Y.
,
Hu
,
J.
, and
Huang
,
G. L.
,
2016
, “
A Design of Active Elastic Metamaterials for Control of flexural Waves Using the Transformation Method
,”
J. Int. Mat. Sys. Stru
,
27
(
10
), pp.
1337
1347
. 10.1177/1045389X15590273
47.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Yuan
,
F. G.
, and
Huang
,
G. L.
,
2015
, “
Microstructural Designs of Plate-Type Elastic Metamaterial and Their Potential Applications: a Review
,”
Int. J. Smart Nano Mat.
,
6
(
1
), pp.
14
40
. 10.1080/19475411.2015.1025249
48.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
. 10.1016/j.ijengsci.2008.12.007
You do not currently have access to this content.