Abstract

The characteristics of blood flow in an abnormal pediatric aorta with an aortic coarctation and aortic arch narrowing are examined using direct numerical simulations and patient-specific boundary conditions. The blood flow simulations of a normal pediatric aorta are used for comparison to identify unique flow features resulting from the aorta geometrical anomalies. Despite flow similarities compared to the flow in normal aortic arch, the flow velocity decreases with an increase in pressure, wall shear stress, and vorticity around both anomalies. The presence of wall shear stresses in the trailing indentation region and aorta coarctation opposing the primary flow direction suggests that there exist recirculation zones in the aorta. The discrepancy in relative flowrates through the top and bottom of the aorta outlets, and the pressure drop across the coarctation, implies a high blood pressure in the upper body and a low blood pressure in the lower body. We propose using flow manipulators prior to the aortic arch and coarctation to lower the wall shear stress, while making the recirculation regions both smaller and weaker. The flow manipulators form a guide to divert and correct blood flow in critical regions of the aorta with anomalies.

References

References
1.
Johnston
,
B.
,
Johnston
,
P.
, and
Kilpatrick
,
D.
,
May, 2004
, “
Non-Newtonian Blood Flow in Human Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
. 10.1016/j.jbiomech.2003.09.016
2.
Armstrong
,
M.
,
Horner
,
J.
,
Clark
,
M.
,
Deegan
,
M.
,
Hill
,
T.
,
Keith
,
C.
, and
Mooradian
,
L.
,
Sept., 2018
, “
Evaluating Rheological Models for Human Blood Using Steady State, Transient, and Oscillatory Shear Predictions
,”
Rheol. Acta.
,
57
(
3
), pp.
705
728
. 10.1007/s00397-018-1109-5
3.
Song
,
X.
,
Wood
,
H.
,
Day
,
S.
, and
Olsen
,
D.
,
2003
, “
Studies of Turbulence Models in a Computational Fluid Dynamics Model of a Blood Pump
,”
Artif. Organs.
,
27
(
10
), pp.
935
937
. 10.1046/j.1525-1594.2003.00025.x
4.
Crosetto
,
P.
,
Reyond
,
P.
,
Deparis
,
S.
,
Kontaxakis
,
D.
,
Stergiopulos
,
N.
, and
Quarteroni
,
A.
,
April, 2011
, “
Fluid-Structure Interaction Simulation of Aortic Blood Flow
,”
Comput. Fluids
,
43
(
1
), pp.
46
57
. 10.1016/j.compfluid.2010.11.032
5.
Vita
,
F.
,
Tullio
,
M.
, and
Verzicco
,
R.
,
Nov., 2015
, “
Numerical Simulation of the Non-Newtonian Blood Flow Through a Mechanical Aortic Valve
,”
Theor. Comput. Fluid Dyn.
,
30
(
1–2
), pp.
129
138
. 10.1007/s00162-015-0369-2
6.
Maivè
,
M.
,
Garcia
,
A.
,
Ohayon
,
J.
, and
Martinez
,
M.
,
July, 2012
, “
Unsteady Blood Flow and Mass Transfer of a Human Left Coronary Artery Bifurcation: FSI Vs. CFD
,”
Int. Communi. Heat and Mass Transfer
,
39
(
6
), pp.
745
751
. 10.1016/j.icheatmasstransfer.2012.04.009
7.
Olufsen
,
M.
,
Peskin
,
S.
,
Kim
,
W.
,
Pedersen
,
E.
,
Nadim
,
A.
, and
Larsen
,
J.
,
Nov., 2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
(
11
), pp.
1281
1299
. 10.1114/1.1326031
8.
Soudah
,
E.
,
Onate
,
E.
, and
Cervera
,
M.
,
2016
, “
Computational fluid dynamics indicators to improve cardiovascular pathologies diagnosis
”.
Monograph CIMNE
.
9.
Zhang
,
J.
,
Zhang
,
P.
,
Fraser
,
K.
,
Griffith
,
B.
, and
Wu
,
Z.
,
Aug., 2013
, “
Comparison of Fluid Dynamic Numerical Models for a Clinical Verntricular Assisst Device and Experimental Validation
,”
Artificial Organ
,
37
(
119
), pp.
380
389
. 10.1111/j.1525-1594.2012.01576.x
10.
Doost
,
S.
,
Zhong
,
L.
,
Su
,
B.
, and
Morsi
,
Y.
,
April, 2016
, “
The Numerical Analysis of Non-Newtonian Blood Flow in Human-specific Left Ventricle
,”
Comput. Methods Programs Biomed.
,
127
(
1
), pp.
232
247
. 10.1016/j.cmpb.2015.12.020
11.
Khan
,
M.
,
Steinman
,
D.
, and
Valen-Sendstad
,
K.
,
July, 2017
, “
Non-Newtonian Versus Numerical Rheology: Practical Impact of Shear-Thinning on the Prediction of Stable and Unstable Flows in Intracranial Anuerysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
7
), p.
e2836
10.1002/cnm.2836
12.
Lantz
,
J.
,
Renner
,
J.
, and
Karlsson
,
M.
,
2011
, “
Wall Shear Stress in a Subject Specific Human Aorta - Influence of Fluid-structure Interaction
,”
Int. J. Appl. Mech.
,
4
(
4
), pp.
759
778
. 10.1142/s1758825111001226
13.
Fujita
,
M.
,
Sakabe
,
M.
,
Ioka
,
T.
,
Watanabe
,
Y.
,
Kinugasa-Katayama
,
Y.
,
Tsuchihashi
,
T.
,
Utset
,
M.
,
Yamagishi
,
H.
, and
Nakagawa
,
O.
,
2016
, “
Pharyngeal Arch Artery Defects and Lethal Malformations of the Aortic Arch and Its Branches in Mice Deficient for the Hrt1/hey1 Transcription Factor
,”
Mech. Dev.
,
139
(
1
), pp.
65
73
. 10.1016/j.mod.2015.11.002
14.
Priya
,
S.
,
Thomas
,
R.
,
Nagpal
,
P.
,
Sharma
,
A.
, and
Steigner
,
M.
,
2018
, “
Cogenital Anomalies of the Aortic Arch
,”
Cardiovasc. Diagn. Therapy
,
8
(
1
), pp.
S26
S44
. 10.21037/cdt.2017.10.15
15.
Rao
,
P.
,
2005
, “
Coarctation of the Aorta
,”
Current Cardiol. Rep.
,
7
(
1
), pp.
425
434
. 10.1007/s11886-005-0060-0
16.
Cheatham
,
J.
,
2001
, “
Stenting of Coarctation of the Aorta
,”
Catheterization Cardiovasc. Interv.
,
54
(
1
), pp.
112
125
. 10.1002/ccd.1249
17.
Cohen
,
M.
,
Fuster
,
V.
,
Steele
,
P.
,
Driscoll
,
D.
, and
McGoon
,
D.
,
2019
, “
Coarctation of the Aorta. Long-Term Follow-Up After Surgical Correction
,”
Circulation
,
80
(
4
), pp.
840
845
. 10.1161/01.CIR.80.4.840
18.
Salazar
,
O.
,
Steinberger
,
J.
,
Thomas
,
W.
,
Rocchini
,
A.
,
Carpenter
,
B.
, and
Holler
,
J.
,
2002
, “
Long-term Follow-up of Patients After Coarctation of the Aorta Repair
,”
Am. J. Cardiol.
,
89
(
5
), pp.
541
547
. 10.1016/S0002-9149(01)02293-7
19.
Robinson
,
K.
,
Scott
,
R.
,
Hesek
,
A.
,
Woodford
,
E.
,
Amir
,
W.
,
Planchon
,
T.
,
Klick
,
K.
, and
Akins
,
R.
,
2017
, “
Reduced Arterial Elasticity Due to Surgical Skeletonization Is Ameliorated by Abluminal PEG Hydrogel
,”
Bioeng. Trans. Med.
,
30
(
2
), pp.
222
232
. 10.1002/btm2.10060
20.
Alastruey
,
J.
,
Xiao
,
N.
,
Fok
,
H.
,
Schaeffter
,
T.
, and
Figueroa
,
C.
,
2016
, “
On the Impact of Modelling Assumptions in Multi-Scale, Subject-Specific Models of Aortic Hemodynamics
,”
J. R. Soc. Interface
,
13
(
119
), p.
20160073
. 10.1098/rsif.2016.0073
21.
Stein
,
P.
, and
Sabbah
,
H.
,
1976
, “
Turbulent Blood Flow in the Ascending Aorta of Humans With Normal and Diseased Aortic Valves
,”
Circ. Res.
,
39
(
1
), pp.
58
65
. 10.1161/01.RES.39.1.58
22.
Vitanova
,
K.
,
Cleuziou
,
J.
,
Pabst
,
J.
,
Burri
,
M.
,
Eicken
,
A.
, and
Lange
,
R.
,
2017
, “
Recoarctation After Norwood 1 Procedure for Hypoplastic Left Heart Syndrome: Impact of Patch Material
,”
Ann. Thorac. Surg.
,
103
(
2
), pp.
617
621
. 10.1016/j.athoracsur.2016.10.030
23.
Riley
,
W.
,
Barnes
,
R.
,
Evans
,
G.
, and
Burke
,
G.
,
1992
, “
Ultrasound Measurements of the Elastic Modulus of the Common Carotid Artery: The Aterosclerosis Risk in Communities (aric) Study
,”
Stroke
,
23
(
1
), pp.
952
956
. 10.1161/01.STR.23.7.952
24.
Somers
,
D
,
2003
,
Design and Experimental Results for the S809 Airfoil
, latest ed,
National Renewable Energy Laboratory
,
Golden
. See also URL https://www.nrel.gov/docs/legosti/old/6918.pdf.
25.
Jia
,
Y.
,
2020
, “
The implications of coarctation and indentation of the aorta on blood flow characteristics in pediatric patients
.” M.s. thesis,
University of Alberta
,
Edmonton, AB
.
26.
Kim
,
H.
,
Vignon-Clementel
,
I.
,
Figueroa
,
C.
,
LaDisa
,
J.
,
Jansen
,
K.
,
Feinstein
,
J.
, and
Taylor
,
C.
,
2009
, “
On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2153
2169
. 10.1007/s10439-009-9760-8
27.
Bown
,
P.
,
Shearier
,
E.
,
Zhao
,
S.
,
Guillory
,
R.
,
Zhao
,
F.
,
Goldman
,
J.
, and
Drelich
,
J.
,
2016
, “
Biodegradeable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys
,”
Adv. Healthcare. Mater.
,
5
(
10
), pp.
1121
1140
. 10.1002/adhm.201501019
You do not currently have access to this content.