Abstract

Zero-mass particles are, as a rule, never used in analytical dynamics, because they lead to singular mass matrices. However, recent advances in the development of the explicit equations of motion of constrained mechanical systems with singular mass matrices permit their use under certain circumstances. This paper shows that the use of such particles can be very efficacious in some problems in analytical dynamics that have resisted easy, general formulations, and in obtaining the equations of motion for complex multi-body systems. We explore the ease and simplicity that suitably used zero-mass particles can provide in formulating and simulating the equations of motion of a rigid, non-homogeneous sphere rolling under gravity, without slipping, on an arbitrarily prescribed surface. Computational results comparing the significant difference in the motion of a homogeneous sphere and a non-homogeneous sphere rolling down an asymmetric arbitrarily prescribed surface are obtained, along with measures of the accuracy of the computations. While the paper shows the usefulness of zero-mass particles applied to the classical problem of a rolling sphere, the development given is described in a general enough manner to be applicable to numerous other problems in analytical and multi-body dynamics that may have much greater complexity.

References

1.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1992
, “
A New Perspective on Constrained Motion
,”
Proc. R. Soc. London, Ser. A
,
439
, pp.
407
410
.
2.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1996
,
Analytical Dynamics: A New Approach
,
Cambridge University Press
,
Cambridge, UK
.
3.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
2002
, “
What is the General Form of the Explicit Equations of Motion for Constrained Mechanical Systems?
,”
ASME J. Appl. Mech.
,
69
(
3
), pp.
335
339
.
4.
Udwadia
,
F. E.
,
2003
, “
A New Perspective on the Tracking Control of Nonlinear Structural and Mechanical Systems
,”
Proc. R. Soc. London, Ser. A
,
459
(
2035
), pp.
1783
1800
.
5.
Udwadia
,
F. E.
,
2005
, “
On Constrained Motion
,”
Appl. Math. Comput.
,
164
(
2
), pp.
313
320
.
6.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
,
2006
, “
Explicit Equations of Motion for Constrained Mechanical Systems With Singular Mass Matrices and Applications to Multi-Body Dynamics
,”
Proc. R. Soc. London, Ser. A
,
462
, pp.
2097
2117
.
7.
Udwadia
,
F. E.
, and
Schutte
,
A. D.
,
2010
, “
Equations of Motion for General Constrained Systems in Lagrangian Mechanics
,”
Acta Mech.
,
213
(
1–2
), pp.
111
129
.
8.
Schutte
,
A. D.
, and
Udwadia
,
F. E.
,
2011
, “
New Approach to the Modeling of Complex Multi-Body Dynamical Systems
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021018
.
9.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2013
, “
On General Nonlinear Mechanical Systems, Numerical Algebra
,”
Control Optim.
,
3
(
3
), pp.
425
443
.
10.
Lindelöf
,
E.
,
1895
, Sur le mouvement d’un corps de revolution roulant sur un plan horizontal, Acta Societatis Scientiarum Fennicae, Vol. XX, No. 10.
11.
Chaplygin
,
S. A.
,
1948
, “
On Ball’s Rolling on Horizontal Plane
,”
Collect. Works
, GITTL, Leningrad, Moscow, vol. 1, pp.
76
101
.
12.
Chaplygin
,
S. A.
,
1948
, “
On Motion of Heavy Rigid Body of Revolution on Horizontal Plane
,”
Collect. Works
, GITTL, Leningrad, Moscow,
1
, pp.
57
75
.
13.
Kilin
,
A. A.
,
2001
, “
The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis
,”
Regul. Chaotic Dyn.
,
6
(
3
), pp.
291
306
.
14.
Borisov
,
A. V.
, and
Mamaev
,
I. S.
,
2002
, “
Rolling of a Rigid Body on a Plane and Sphere: Hierarchy of Dynamics
,”
Regul. Chaotic Dyn.
,
7
(
2
), pp.
177
200
.
15.
Borisov
,
A. V.
,
Ivanova
,
T. B.
,
Kilin
,
A. A.
, and
Mamaev
,
I. S.
,
2019
, “
Nonholonomic Rolling of a Ball on the Surface of a Rotating Cone
,”
Nonlinear Dyn.
,
97
(
2
), pp.
1635
1648
.
16.
Ivanov
,
A. P.
,
2016
, “
On Final Motions of a Chaplygin Ball on a Rough Plane
,”
Regul. Chaotic Dyn.
,
21
(
7–8
), pp.
804
810
.
17.
Udwadia
,
F. E.
, and
Shutte
,
A. D.
,
2010
, “
An Alternative Derivation of the Quaternion Equations of Motion for Rigid-Body Rotational Dynamics
,”
ASME J. Appl. Mech.
,
77
(
4
), p.
044505
.
18.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1994
, “
An Alternate Derivation of the Greville Formula
,”
J. Optim. Theory Appl.
,
94
(
1
), pp.
23
28
.
You do not currently have access to this content.