Abstract

It has been recently revealed that large-scale bridging mechanism can be invoked to drastically improve the debonding resistance of hydrogel adhesion, but the optimization of the improvement remains elusive. Aiming at shedding light on the optimization, the present article investigates the cohesive behaviors of hydrogel under the condition of large-scale bridging in 90-deg peel. A quasi-static model is established based on the principle of minimum potential energy, with the traction-separation law determined from experiments. The model is proved reliable in predicting the force-displacement response and the backing profile up to the peak peel force. Further theoretical analyses indicate that, within the range of interest, the peak peel force decreases with the extended length, increases with the Young’s modulus of backing, increases, and then plateaus with the adhesion length and the thickness and bending stiffness of backing. In addition, the vertical displacement at peak peel force escalates with the extended length, remains mostly constant with varying adhesion length, declines with the Young’s modulus of backing, and declines and then stabilizes with increasing thickness and bending stiffness of backing. These theoretical insights may help tailor the material properties and geometric parameters for on-demand design of hydrogel adhesion and other soft adhesives for biomedicine and engineering.

References

1.
Buwalda
,
S. J.
,
Boere
,
K. W. M.
,
Dijkstra
,
P. J.
,
Feijen
,
J.
,
Vermonden
,
T.
, and
Hennink
,
W. E.
,
2014
, “
Hydrogels in a Historical Perspective: From Simple Networks to Smart Materials
,”
J. Controlled Release
,
190
, pp.
254
273
.
2.
Yang
,
C.
, and
Suo
,
Z.
,
2018
, “
Hydrogel Ionotronics
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
125
142
.
3.
Liu
,
X.
,
Liu
,
J.
,
Lin
,
S.
, and
Zhao
,
X.
,
2020
, “
Hydrogel Machines
,”
Mater. Today
,
36
, pp.
102
124
.
4.
Liu
,
J.
,
Qu
,
S.
,
Suo
,
Z.
, and
Yang
,
W.
,
2020
, “
Functional Hydrogel Coatings
,”
Natl. Sci. Rev.
,
8
(
2
), p.
nwaa254
.
5.
Nam
,
S.
, and
Mooney
,
D.
,
2021
, “
Polymeric Tissue Adhesives
,”
Chem. Rev.
6.
Yuk
,
H.
,
Lin
,
S.
,
Ma
,
C.
,
Takaffoli
,
M.
,
Fang
,
N. X.
, and
Zhao
,
X.
,
2017
, “
Hydraulic Hydrogel Actuators and Robots Optically and Sonically Camouflaged in Water
,”
Nat. Commun.
,
8
(
1
), p.
14230
.
7.
Cheng
,
S.
,
Narang
,
Y. S.
,
Yang
,
C.
,
Suo
,
Z.
, and
Howe
,
R. D.
,
2019
, “
Stick-On Large-Strain Sensors for Soft Robots
,”
Adv. Mater. Interfaces
,
6
(
20
), p.
1900985
.
8.
Li
,
X.
,
Zhang
,
P.
,
Li
,
Q.
,
Wang
,
H.
, and
Yang
,
C.
,
2021
, “
Direct-Ink-Write Printing of Hydrogels Using Dilute Inks
,”
iScience
,
24
(
4
), p.
102319
.
9.
Ghobril
,
C.
, and
Grinstaff
,
M. W.
,
2015
, “
The Chemistry and Engineering of Polymeric Hydrogel Adhesives for Wound Closure: A Tutorial
,”
Chem. Soc. Rev.
,
44
(
7
), pp.
1820
1835
.
10.
Amjadi
,
M.
,
Sheykhansari
,
S.
,
Nelson
,
B. J.
, and
Sitti
,
M.
,
2018
, “
Recent Advances in Wearable Transdermal Delivery Systems
,”
Adv. Mater.
,
30
(
7
), p.
1704530
.
11.
Larson
,
C.
,
Peele
,
B.
,
Li
,
S.
,
Robinson
,
S.
,
Totaro
,
M.
,
Beccai
,
L.
,
Mazzolai
,
B.
, and
Shepherd
,
R.
,
2016
, “
Highly Stretchable Electroluminescent Skin for Optical Signaling and Tactile Sensing
,”
Science
,
351
(
6277
), pp.
1071
–1074.
12.
Yang
,
C. H.
,
Chen
,
B.
,
Zhou
,
J.
,
Chen
,
Y. M.
, and
Suo
,
Z.
,
2016
, “
Electroluminescence of Giant Stretchability
,”
Adv. Mater.
,
28
(
22
), pp.
4480
4484
.
13.
Yang
,
C.
,
Cheng
,
S.
,
Yao
,
X.
,
Nian
,
G.
,
Liu
,
Q.
, and
Suo
,
Z.
,
2020
, “
Ionotronic Luminescent Fibers, Fabrics, and Other Configurations
,”
Adv. Mater.
,
32
(
47
), p.
2005545
.
14.
Lee
,
Y.
,
Song
,
W. J.
,
Jung
,
Y.
,
Yoo
,
H.
,
Kim
,
M.-Y.
,
Kim
,
H.-Y.
, and
Sun
,
J.-Y.
,
2020
, “
Ionic Spiderwebs
,”
Sci. Rob.
,
5
(
44
), p.
eaaz5405
.
15.
Zhang
,
P.
,
Li
,
Q.
,
Xiao
,
Y.
, and
Yang
,
C.
,
2021
, “
Biomimetic Hydrophilic Islands for Integrating Elastomers and Hydrogels of Regulable Curved Profiles
,”
ACS Appl. Electron. Mater.
,
3
(
2
), pp.
668
675
.
16.
Keplinger
,
C.
,
Sun
,
J.-Y.
,
Foo
,
C. C.
,
Rothemund
,
P.
,
Whitesides
,
G. M.
, and
Suo
,
Z.
,
2013
, “
Stretchable, Transparent, Ionic Conductors
,”
Science
,
341
(
6149
), pp.
984
987
.
17.
Kim
,
C.-C.
,
Lee
,
H.-H.
,
Oh
,
K. H.
, and
Sun
,
J.-Y.
,
2016
, “
Highly Stretchable, Transparent Ionic Touch Panel
,”
Science
,
353
(
6300
), pp.
682
687
.
18.
Yang
,
C. H.
,
Chen
,
B.
,
Lu
,
J. J.
,
Yang
,
J. H.
,
Zhou
,
J.
,
Chen
,
Y. M.
, and
Suo
,
Z.
,
2015
, “
Ionic Cable
,”
Extreme Mech. Lett.
,
3
, pp.
59
65
.
19.
Yang
,
H.
,
Li
,
C.
,
Yang
,
M.
,
Pan
,
Y.
,
Yin
,
Q.
,
Tang
,
J.
,
Qi
,
H. J.
, and
Suo
,
Z.
,
2019
, “
Printing Hydrogels and Elastomers in Arbitrary Sequence With Strong Adhesion
,”
Adv. Funct. Mater.
,
29
(
27
), p.
1901721
.
20.
Yang
,
J.
,
Bai
,
R.
, and
Suo
,
Z.
,
2018
, “
Topological Adhesion of Wet Materials
,”
Adv. Mater.
,
30
(
25
), p.
1800671
.
21.
Kendall
,
K.
,
1975
, “
Thin-Film Peeling: The Elastic Term
,”
J. Phys. D: Appl. Phys.
,
8
(
13
), pp.
1449
1452
.
22.
Peng
,
Z.
,
Wang
,
C.
,
Yang
,
Y.
, and
Chen
,
S.
,
2016
, “
Effect of Relative Humidity on the Peeling Behavior of a Thin Film on a Rigid Substrate
,”
Phys. Rev. E
,
94
(
3
), p.
032801
.
23.
Peng
,
Z.
, and
Chen
,
S.
,
2012
, “
Effect of Pre-Tension on the Peeling Behavior of a Bio-Inspired Nano-Film and a Hierarchical Adhesive Structure
,”
Appl. Phys. Lett.
,
101
(
16
), p.
163702
.
24.
Feng
,
X.
,
Meitl
,
M. A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2007
, “
Competing Fracture in Kinetically Controlled Transfer Printing
,”
Langmuir
,
23
(
25
), pp.
12555
12560
.
25.
Cheng
,
H.
,
Li
,
M.
,
Wu
,
J.
,
Carlson
,
A.
,
Kim
,
S.
,
Huang
,
Y.
,
Kang
,
Z.
,
Hwang
,
K.-C.
, and
Rogers
,
J. A.
,
2013
, “
A Viscoelastic Model for the Rate Effect in Transfer Printing
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041019
.
26.
Molinari
,
A.
, and
Ravichandran
,
G.
,
2008
, “
Peeling of Elastic Tapes: Effects of Large Deformations, Pre-Straining, and of a Peel-Zone Model
,”
J. Adhes.
,
84
(
12
), pp.
961
995
.
27.
Avellar
,
L.
,
Reese
,
T.
,
Bhattacharya
,
K.
, and
Ravichandran
,
G.
,
2018
, “
Effect of Cohesive Zone Size on Peeling of Heterogeneous Adhesive Tape
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121005
.
28.
Kim
,
K. S.
, and
Aravas
,
N.
,
1988
, “
Elastoplastic Analysis of the Peel Test
,”
Int. J. Solids Struct.
,
24
(
4
), pp.
417
435
.
29.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
1998
, “
Interface Strength, Work of Adhesion and Plasticity in the Peel Test
,”
International Journal of Fracture
,
93
(
1
), pp.
315
333
.
30.
Lu
,
Z. X.
,
Yu
,
S. W.
,
Wang
,
X. Y.
, and
Feng
,
X. Q.
,
2007
, “
Effect of Interfacial Slippage in Peel Test: Theoretical Model
,”
Eur. Phys. J. E
,
23
(
1
), pp.
67
76
.
31.
Thouless
,
M. D.
, and
Yang
,
Q. D.
,
2008
, “
A Parametric Study of the Peel Test
,”
Int. J. Adhes. Adhes.
,
28
(
4
), pp.
176
184
.
32.
Israelachvili
,
J. N.
,
1992
,
Intermolecular and Surface Forces
,
Academic Press
,
New York
.
33.
Oyharcabal
,
X.
, and
Frisch
,
T.
,
2005
, “
Peeling off an Elastica From a Smooth Attractive Substrate
,”
Phys. Rev. E
,
71
(
3
), p.
036611
.
34.
Needleman
,
A.
,
1990
, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
,
42
(
1
), pp.
21
40
.
35.
Peng
,
Z.
, and
Chen
,
S.
,
2015
, “
Effect of Bending Stiffness on the Peeling Behavior of an Elastic Thin Film on a Rigid Substrate
,”
Phys. Rev. E
,
91
(
4
), p.
042401
.
36.
Peng
,
Z.
,
Yin
,
H.
,
Yao
,
Y.
, and
Chen
,
S.
,
2019
, “
Effect of Thin-Film Length on the Peeling Behavior of Film-Substrate Interfaces
,”
Phys. Rev. E
,
100
(
3
), p.
032804
.
37.
Yin
,
H. B.
,
Chen
,
S. H.
,
Liang
,
L. H.
,
Peng
,
Z. L.
, and
Wei
,
Y. G.
,
2018
, “
Quantitative Prediction of the Whole Peeling Process of an Elastic Film on a Rigid Substrate
,”
ASME J. Appl. Mech.
,
85
(
9
), p.
091004
.
38.
Wang
,
Y.
,
Yin
,
T.
, and
Suo
,
Z.
,
2021
, “
Polyacrylamide Hydrogels. III. Lap Shear and Peel
,”
J. Mech. Phys. Solids
,
150
, p.
104348
.
39.
He
,
Y.
,
Wan
,
X.
,
Chen
,
Y.
, and
Yang
,
C.
,
2021
, “
Enhance the Debonding Resistance of Hydrogel by Large-Scale Bridging
,”
J. Mech. Phys. Solids
,
155
, p.
104570
.
40.
Sauer
,
R. A.
,
2011
, “
The Peeling Behavior of Thin Films with Finite Bending Stiffness and the Implications on Gecko Adhesion
,”
J. Adhes.
,
87
(
7–8
), pp.
624
643
.
41.
Wei
,
Y.
, and
Zhao
,
H.
,
2008
, “
Peeling Experiments of Ductile Thin Films Along Ceramic Substrates – Critical Assessment of Analytical Models
,”
Int. J. Solids Struct.
,
45
(
13
), pp.
3779
3792
.
42.
Kolvin
,
I.
,
Kolinski
,
J. M.
,
Gong
,
J. P.
, and
Fineberg
,
J.
,
2018
, “
How Supertough Gels Break
,”
Phys. Rev. Lett.
,
121
(
13
), p.
135501
.
You do not currently have access to this content.