Abstract

Thermal shock multiple cracking behaviors of re-entrant auxetic honeycombs with a negative Poisson’s ratio are investigated, and the crack initiation and propagation behavior are discussed. An effective macro continuum model is developed to detect the effects of cracking density and microstructures of auxetic honeycombs on the thermal stress and intensity. The microscale tensile stresses in the struts ahead of the crack as functions of the corresponding thermal stress intensity factor (SIF) at the macroscale are evaluated by employing a macro–micro model. Then, a lower-bound method is proposed to assess the critical thermal load of auxetic honeycombs by combining the macro-micro model and the macro continuum model. A significant increase in both transient thermal stress and intensity as the growing cell-wall angle is demonstrated. Results for the maximum thermal SIF as well as the maximum tensile stress in the middle of cracks are calculated as functions of crack density and length. With the identical SIF, the microscale tensile stresses ahead of the crack in honeycombs with smaller cell-wall angles are greater than that in mediums with larger angles due to the more significant crack tip opening displacement. Critical thermal load prediction reveals that the honeycombs with smaller cell-wall angles generally possess more excellent thermal shock resistance. Also, the varying failure modes of different auxetic honeycomb strips under specific thermal load are predicted. The corresponding mechanisms of crack initiation and propagation are revealed.

References

1.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1041
.
2.
Duncan
,
O.
,
Shepherd
,
T.
,
Moroney
,
C.
,
Foster
,
L.
,
Venkatraman
,
P.
,
Winwood
,
K.
,
Allen
,
T.
, and
Alderson
,
A.
,
2018
, “
Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection
,”
Appl. Sci.
,
8
(
6
), p.
941
.
3.
Mir
,
M.
,
Ali
,
M. N.
,
Sami
,
J.
, and
Ansari
,
U.
,
2014
, “
Review of Mechanics and Applications of Auxetic Structures
,”
Adv. Mater. Sci. Eng.
,
2014
.
4.
Prawoto
,
Y.
,
2012
, “
Seeing Auxetic Materials From the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio
,”
Comput. Mater. Sci.
,
58
, pp.
140
153
.
5.
Liu
,
Q.
,
2006
,
Literature Review: Materials with Negative Poisson's Ratios and Potential Applications to Aerospace and Defence
.
6.
Dolla
,
W. J. S.
,
Fricke
,
B. A.
, and
Becker
,
B. R.
,
2007
, “
Structural and Drug Diffusion Models of Conventional and Auxetic Drug-Eluting Stents
,”
J. Med. Devices
,
1
(
1
), pp.
47
55
.
7.
Li
,
Z.
,
Wang
,
B. L.
,
Wang
,
K. F.
, and
Zheng
,
L.
,
2021
, “
Improving Thermomechanical Properties of Cracked Brittle Honeycombs by Negative Poisson’s Ratio Effect
,”
Compos. Struct.
,
266
, p.
113825
.
8.
Allen
,
T.
,
Shepherd
,
J.
,
Hewage
,
T. A. M.
,
Senior
,
T.
,
Foster
,
L.
, and
Alderson
,
A.
,
2015
, “
Low-Kinetic Energy Impact Response of Auxetic and Conventional Open-Cell Polyurethane Foams
,”
Phys. Status Solidi B
,
252
(
7
), pp.
1631
1639
.
9.
Fu
,
M. H.
,
Xu
,
O. T.
,
Hu
,
L. L.
, and
Yu
,
T. X.
,
2016
, “
Nonlinear Shear Modulus of Re-entrant Hexagonal Honeycombs Under Large Deformation
,”
Int. J. Solids Struct.
,
80
, pp.
284
296
.
10.
Imbalzano
,
G.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Lee
,
P. V. S.
,
2016
, “
A Numerical Study of Auxetic Composite Panels Under Blast Loadings
,”
Compos. Struct.
,
135
, pp.
339
352
.
11.
Qiao
,
J. X.
, and
Chen
,
C. Q.
,
2015
, “
Impact Resistance of Uniform and Functionally Graded Auxetic Double Arrowhead Honeycombs
,”
Int. J. Impact Eng.
,
83
, pp.
47
58
.
12.
Li
,
Z.
,
Wang
,
K. F.
, and
Wang
,
B. L.
,
2021
, “
Indentation Resistance of Brittle Auxetic Structures: Combining Discrete Representation and Continuum Model
,”
Eng. Fract. Mech.
,
252
, p.
107824
.
13.
Auricchio
,
F.
,
Bacigalupo
,
A.
,
Gambarotta
,
L.
,
Lepidi
,
M.
,
Morganti
,
S.
, and
Vadalà
,
F.
,
2019
, “
A Novel Layered Topology of Auxetic Materials Based on the Tetrachiral Honeycomb Microstructure
,”
Mater. Des.
,
179
, p.
107883
.
14.
Hu
,
L. L.
,
Wu
,
Z. J.
, and
Fu
,
M. H.
,
2018
, “
Mechanical Behavior of Anti-trichiral Honeycombs Under Lateral Crushing
,”
Int. J. Mech. Sci.
,
140
, pp.
537
546
.
15.
Fu
,
M.
,
Liu
,
F.
, and
Hu
,
L.
,
2018
, “
A Novel Category of 3D Chiral Material With Negative Poisson's Ratio
,”
Compos. Sci. Technol.
,
160
, pp.
111
118
.
16.
Fu
,
Z.
,
Freihart
,
M.
,
Wahl
,
L.
,
Fey
,
T.
,
Greil
,
P.
, and
Travitzky
,
N.
,
2017
, “
Micro-and Macroscopic Design of Alumina Ceramics by Robocasting
,”
J. Eur. Ceram. Soc.
,
37
(
9
), pp.
3115
3124
.
17.
Lantada
,
A. D.
,
de Blas Romero
,
A.
,
Schwentenwein
,
M.
,
Jellinek
,
C.
, and
Homa
,
J.
,
2016
, “
Lithography-Based Ceramic Manufacture (LCM) of Auxetic Structures: Present Capabilities and Challenges
,”
Smart Mater. Struct.
,
25
(
5
), p.
054015
.
18.
Hurwitz
,
F. I.
,
Steffier
,
W.
,
Koenig
, and
Kiser
,
J.
,
2009
, “
Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures
,”
NASA Tech Briefs
, p.
36
.
19.
Hurwitz
,
F. I.
,
2010
, “
Thermal Protection Systems (TPSs)
,”
Struct. Mater.
20.
Ferrari
,
L.
,
Barbato
,
M.
,
Esser
,
B.
,
Petkov
,
I.
,
Kuhn
,
M.
,
Gianella
,
S.
,
Barcena
,
J.
,
Jimenez
,
C.
,
Francesconi
,
D.
,
Liedtke
,
V.
, and
Ortona
,
A.
,
2016
, “
Sandwich Structured Ceramic Matrix Composites With Periodic Cellular Ceramic Cores: An Active Cooled Thermal Protection for Space Vehicles
,”
Compos. Struct.
,
154
, pp.
61
68
.
21.
Hu
,
L. L.
,
Zhou
,
M. Z.
, and
Deng
,
H.
,
2018
, “
Dynamic Crushing Response of Auxetic Honeycombs Under Large Deformation: Theoretical Analysis and Numerical Simulation
,”
Thin-Walled Struct.
,
131
, pp.
373
384
.
22.
Cong
,
P. H.
, and
Duc
,
N. D.
,
2021
, “
Nonlinear Dynamic Analysis of Porous Eccentrically Stiffened Double Curved Shallow Auxetic Shells in Thermal Environments
,”
Thin-Walled Struct.
,
163
, p.
107748
.
23.
Van Quyen
,
N.
,
Van Thanh
,
N.
,
Quan
,
T. Q.
, and
Duc
,
N. D.
,
2021
, “
Nonlinear Forced Vibration of Sandwich Cylindrical Panel With Negative Poisson’s Ratio Auxetic Honeycombs Core and CNTRC Face Sheets
,”
Thin-Walled Struct.
,
162
, p.
107571
.
24.
Argatov
,
I. I.
,
Guinovart-Díaz
,
R.
, and
Sabina
,
F. J.
,
2012
, “
On Local Indentation and Impact Compliance of Isotropic Auxetic Materials From the Continuum Mechanics Viewpoint
,”
Int. J. Eng. Sci.
,
54
, pp.
42
57
.
25.
Almutairi
,
M. M.
,
Osman
,
M.
, and
Tlili
,
I.
,
2018
, “
Thermal Behavior of Auxetic Honeycomb Structure: An Experimental and Modeling Investigation
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122904
.
26.
Lim
,
T.-C.
,
2013
, “
Thermal Stresses in Thin Auxetic Plates
,”
J. Therm. Stresses
,
36
(
11
), pp.
1131
1140
.
27.
Lim
,
T.-C.
,
2014
, “
Thermal Stresses in Auxetic Plates and Shells
,”
Mech. Adv. Mater. Struc.
,
22
(
3
), pp.
205
212
.
28.
Pasternak
,
E.
,
Shufrin
,
I.
, and
Dyskin
,
A. V.
,
2016
, “
Thermal Stresses in Hybrid Materials With Auxetic Inclusions
,”
Compos. Struct.
,
138
, pp.
313
321
.
29.
Van Do
,
T.
,
Doan
,
D. H.
,
Duc
,
N. D.
, and
Bui
,
T. Q.
,
2017
, “
Phase-Field Thermal Buckling Analysis for Cracked Functionally Graded Composite Plates Considering Neutral Surface
,”
Compos. Struct.
,
182
, pp.
542
548
.
30.
Minh
,
P. P.
, and
Duc
,
N. D.
,
2021
, “
The Effect of Cracks and Thermal Environment on Free Vibration of FGM Plates
,”
Thin-Walled Struct.
,
159
.
31.
Minh
,
P. P.
,
Manh
,
D. T.
, and
Duc
,
N. D.
,
2021
, “
Free Vibration of Cracked FGM Plates With Variable Thickness Resting on Elastic Foundations
,”
Thin-Walled Struct.
,
161
, p.
107425
.
32.
Choi
,
J.
, and
Lakes
,
R.
,
1996
, “
Fracture Toughness of re-Entrant Foam Materials With a Negative Poisson's Ratio: Experiment and Analysis
,”
Int. J. Fract.
,
80
(
1
), pp.
73
83
.
33.
Huang
,
J.
, and
Chiang
,
M.
,
1996
, “
Effects of Microstructure, Specimen and Loading Geometries on KIC of Brittle Honeycombs
,”
Eng. Fract. Mech.
,
54
(
6
), pp.
813
821
.
34.
Li
,
J. E.
, and
Wang
,
B. L.
,
2020
, “
Effect of Negative Poisson's Ratio on the Fracture Mechanics Parameters Due to Mechanical and Thermal Loads
,”
Int. J. Eng. Sci.
,
150
, p.
103256
.
35.
Hu
,
J. S.
,
Wang
,
B. L.
,
Li
,
J. E.
, and
Wang
,
K. F.
,
2020
, “
Thermal Shock Resistance Behavior of Auxetic Ceramic Honeycombs With a Central Crack or an Edge Crack
,”
Ceram. Int.
,
46
(
8
), pp.
11835
11845
.
36.
Bahr
,
H.-A.
,
Weiss
,
H.-J.
,
Maschke
,
H.
, and
Meissner
,
F.
,
1988
, “
Multiple Crack Propagation in a Strip Caused by Thermal Shock
,”
Theor. Appl. Fract. Mec.
,
10
(
3
), pp.
219
226
.
37.
Hetnarski
,
R. B.
,
2014
,
Encyclopedia of Thermal Stresses
,
Springer
,
Dordrecht Heidelberg/New York/London
, pp.
5135
5146
.
38.
Sicsic
,
P.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2014
, “
Initiation of a Periodic Array of Cracks in the Thermal Shock Problem: A Gradient Damage Modeling
,”
J. Mech. Phys. Solids
,
63
, pp.
256
284
.
39.
Nguyen
,
D. D.
,
Doan
,
H. D.
,
Do
,
V. T.
, and
Trinh
,
D. T.
,
2018
, “
A Static Buckling Investigation of Multi-cracked FGM Plate Based Phase-Field Method Coupling the New TSDT
,”
Acta Mech.
40.
Zhang
,
Y. X.
, and
Wang
,
B. L.
,
2013
, “
Thermal Shock Resistance Analysis of a Semi-infinite Ceramic Foam
,”
Int. J. Eng. Sci.
,
62
, pp.
22
30
.
41.
Li
,
Z.
,
Wang
,
B. L.
,
Guo
,
S. L.
, and
Li
,
J. E.
,
2019
, “
Thermal Shock Resistance of Ceramic Foam Sandwich Structures: Theoretical Calculation and Finite Element Simulation
,”
Int. J. Solids Struct.
,
176–177
, pp.
108
120
.
42.
Hu
,
J.
, and
Wang
,
B.
,
2021
, “
Crack Growth Behavior and Thermal Shock Resistance of Ceramic Sandwich Structures With an Auxetic Honeycomb Core
,”
Compos. Struct.
,
260
, p.
113256
.
43.
Thiyagasundaram
,
P.
,
Wang
,
J.
,
Sankar
,
B. V.
, and
Arakere
,
N. K.
,
2011
, “
Fracture Toughness of Foams With Tetrakaidecahedral Unit Cells Using Finite Element Based Micromechanics
,”
Eng. Fract. Mech.
,
78
(
6
), pp.
1277
1288
.
44.
Choi
,
S.
, and
Sankar
,
B. V.
,
2005
, “
A Micromechanical Method to Predict the Fracture Toughness of Cellular Materials
,”
Int. J. Solids Struct.
,
42
(
5–6
), pp.
1797
1817
.
45.
Wang
,
R.
,
Li
,
W.
,
Ji
,
B.
, and
Fang
,
D.
,
2017
, “
Fracture Strength of the Particulate-Reinforced Ultra-high Temperature Ceramics Based on a Temperature Dependent Fracture Toughness Model
,”
J. Mech. Phys. Solids
,
107
, pp.
365
378
.
46.
Masters
,
I.
, and
Evans
,
K.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
47.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G.
, and
Robertson
,
C.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials, Proceedings of the Royal Society of London
,”
A: Math. Phys. Sci.
,
382
(
1782
), pp.
25
42
.
48.
Lu
,
T.
, and
Chen
,
C.
,
1999
, “
Thermal Transport and Fire Retardance Properties of Cellular Aluminium Alloys
,”
Acta Mater.
,
47
(
5
), pp.
1469
1485
.
49.
Wang
,
B. L.
, and
Mai
,
Y.-W.
,
2003
, “
Thermal Shock Fracture of Piezoelectric Materials
,”
Philos. Mag.
,
83
(
5
), pp.
631
657
.
50.
Wang
,
B.-L.
, and
Li
,
J.
,
2005
, “
Thermal Stress and Intensity Release in Ferroelectric Materials by Multiple Cracking
,”
Acta Mater.
,
53
(
3
), pp.
785
799
.
51.
Nied
,
H.
,
1987
, “
Periodic Array of Cracks in a Half-Plane Subjected to Arbitrary Loading
,”
ASME J. Appl. Mech.
,
24
(
3
), pp.
642
648
.
52.
Li
,
Z.
,
Wang
,
B. L.
,
Wang
,
K. F.
, and
Zheng
,
L.
,
2019
, “
A Multi-scale Model for Predicting the Thermal Shock Resistance of Porous Ceramics With Temperature-Dependent Material Properties
,”
J. Eur. Ceram. Soc.
,
39
(
8
), pp.
2720
2730
.
53.
Christodoulou
,
I.
, and
Tan
,
P. J.
,
2013
, “
Crack Initiation and Fracture Toughness of Random Voronoi Honeycombs
,”
Eng. Fract. Mech.
,
104
, pp.
140
161
.
54.
Kanninen
,
M. F.
, and
Popelar
,
C. L.
,
1985
,
Advanced Fracture Mechanics
,
Clarendon, Oxford
.
55.
Gibson
,
L. J.
,
2003
, “
Cellular Solids
,”
MRS Bull.
,
28
(
4
), pp.
270
274
.
You do not currently have access to this content.