Abstract

At sufficiently high velocities, a microparticle impacting a metal substrate can cause ejection of material from the substrate and impact-induced melting, both of which can result in erosion. Here, we directly image the impact of individual hard steel microparticles on soft tin substrates, at controlled impact velocities in the range of ∼100 to 1000 m/s. By using scanning electron and laser scanning confocal microscopy, we characterize the surface morphology, depth, and volume of each impact crater. We observe a gradual onset of impact-induced melting in the craters, as well as the production of increasing amounts of ejecta from the target metal. By comparing measurements of impact and rebound velocity to an elastic-plastic model, we observe that at a high enough impact velocity, melting and ejection begin to consume additional kinetic energy beyond that expected by plastic deformation of the target material alone. By calculating the excess energy dissipation using this elastic-plastic model, we show that although this divergent behavior is associated with the onset of melting, the majority of the ejected volume must be solid rather than liquid.

References

1.
Bernhard
,
R. P.
,
Christiansen
,
E. L.
,
Hyde
,
J.
, and
Crews
,
J. L.
,
1995
, “
Velocity Impact Damage Into Space Shuttle Surfaces
,”
Int. J. Impact Eng.
,
17
(
1–3
), pp.
57
68
.
2.
Christiansen
,
E. L.
,
Hyde
,
J. L.
, and
Bernhard
,
R. P.
,
2004
, “
Space Shuttle Debris and Meteoroid Impacts
,”
Adv. Sp. Res.
,
34
(
5
), pp.
1097
1103
.
3.
Melosh
,
H. J.
,
1984
, “
Impact Ejection, Spallation, and the Origin of Meteorites
,”
Icarus
,
59
(
2
), pp.
234
260
.
4.
Melosh
,
H. J.
, and
Ivanov
,
B. A.
,
1999
, “
Impact Crater Collapse
,”
Annu. Rev. Earth Planet. Sci.
,
27
(
1
), pp.
385
415
.
5.
Parsi
,
M.
,
Najmi
,
K.
,
Najafifard
,
F.
,
Hassani
,
S.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2014
, “
A Comprehensive Review of Solid Particle Erosion Modeling for Oil and Gas Wells and Pipelines Applications
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
850
873
.
6.
Javaheri
,
V.
,
Porter
,
D.
, and
Kuokkala
,
V. T.
,
2018
, “
Slurry Erosion of Steel—Review of Tests, Mechanisms and Materials
,”
Wear
,
408–409
, pp.
248
273
.
7.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.
8.
Zu
,
J. B.
,
Hutchings
,
I. M.
, and
Burstein
,
G. T.
,
1990
, “
Design of a Slurry Erosion Test Rig
,”
Wear
,
140
(
2
), pp.
331
344
.
9.
Stevenson
,
A. N. J.
, and
Hutchings
,
I. M.
,
1995
, “
Scaling Laws for Particle Velocity in the Gas-Blast Erosion Test
,”
Wear
,
181–183
, pp.
56
62
.
10.
Wood
,
R. J. K.
,
Jones
,
T. F.
,
Ganeshalingam
,
J.
, and
Miles
,
N. J.
,
2004
, “
Comparison of Predicted and Experimental Erosion Estimates in Slurry Ducts
,”
Wear
,
256
(
9–10
), pp.
937
947
.
11.
Poole
,
L. L.
,
Gonzales
,
M.
,
French
,
M. R.
,
Yarberry
,
W. A.
,
Moustafa
,
A. R.
, and
Cordero
,
Z. C.
,
2020
, “
Hypervelocity Impact of PrintCast 316L/A356 Composites
,”
Int. J. Impact Eng.
,
136
.
12.
Berthoud
,
L.
, and
Mandeville
,
J. C.
,
1997
, “
Material Damage in Space From Microparticle Impact
,”
J. Mater. Sci.
,
32
(
11
), pp.
3043
3048
.
13.
Melosh
,
H. J.
,
1989
,
Impact Cratering: A Geologic Process
,
Oxford University Press
,
Oxford, UK
.
14.
Johnson
,
B. C.
,
Bowling
,
T. J.
, and
Melosh
,
H. J.
,
2014
, “
Jetting During Vertical Impacts of Spherical Projectiles
,”
Icarus
,
238
, pp.
13
22
.
15.
Housen
,
K. R.
, and
Holsapple
,
K. A.
,
2011
, “
Ejecta From Impact Craters
,”
Icarus
,
211
(
1
), pp.
856
875
.
16.
Kurosawa
,
K.
, and
Takada
,
S.
,
2019
, “
Impact Cratering Mechanics: A Forward Approach to Predicting Ejecta Velocity Distribution and Transient Crater Radii
,”
Icarus
,
317
, pp.
135
147
.
17.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Champagne
,
V. K.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2018
, “
Adiabatic Shear Instability Is Not Necessary for Adhesion in Cold Spray
,”
Acta Mater.
,
158
, pp.
430
439
.
18.
Tiamiyu
,
A. A.
,
Sun
,
Y.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2021
, “
Site-Specific Study of Jetting, Bonding, and Local Deformation During High-Velocity Metallic Microparticle Impact
,”
Acta Mater.
,
202
, pp.
159
169
.
19.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Champagne
,
V. K.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2019
, “
Response to Comment on ‘Adiabatic Shear Instability Is Not Necessary for Adhesion in Cold Spray’
,”
Scr. Mater.
,
162
, pp.
515
519
.
20.
Lee
,
C.
, and
Kim
,
J.
,
2015
, “
Microstructure of Kinetic Spray Coatings: A Review
,”
J. Therm. Spray Technol.
,
24
(
4
), pp.
592
610
.
21.
Finne
,
I.
,
1960
, “
Erosion of Surfaces
,”
Wear
,
3
(
2
), pp.
87
103
.
22.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
3
), pp.
169
190
.
23.
Sundararajan
,
G.
, and
Shewmon
,
P. G.
,
1983
, “
A New Model for the Erosion of Metals at Normal Incidence
,”
Wear
,
84
(
2
), pp.
237
258
.
24.
Bellman
,
R.
, and
Levy
,
A.
,
1986
, “
Platelet Mechanism of Erosion of Ductile Metals
,”
Wear
,
108
, pp.
1
21
.
25.
Hutchings
,
I. M.
,
1981
, “
A Model for the Erosion of Metals by Spherical Particles at Normal Incidence
,”
Wear
,
70
(
3
), pp.
269
281
.
26.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2018
, “
Melt-Driven Erosion in Microparticle Impact
,”
Nat. Commun.
,
9
(
1
), pp.
1
7
.
27.
Veysset
,
D.
,
Hsieh
,
A. J.
,
Kooi
,
S.
,
Maznev
,
A. A.
,
Masser
,
K. A.
, and
Nelson
,
K. A.
,
2016
, “
Dynamics of Supersonic Microparticle Impact on Elastomers Revealed by Real-Time Multi-Frame Imaging
,”
Sci. Rep.
,
6
(
1
), pp.
1
7
.
28.
Veysset
,
David
,
Lee
,
Jae-Hwang
,
Hassani
,
Mostafa
,
Kooi
,
Steven
,
Thomas
,
Edwin
, and
Nelson
,
Keith
,
2021
, “
High-Velocity Micro-Projectile Impact Testing
,”
Applied Physics Reviews
,
8
(
1
).
29.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2018
, “
In-Situ Observations of Single Micro-Particle Impact Bonding
,”
Scr. Mater.
,
145
, pp.
9
13
.
30.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2017
, “
Melting Can Hinder Impact-Induced Adhesion
,”
Phys. Rev. Lett.
,
119
(
17
), pp.
1
5
.
31.
Tiamiyu
,
A. A.
, and
Schuh
,
C. A.
,
2020
, “
Particle Flattening During Cold Spray: Mechanistic Regimes Revealed by Single Particle Impact Tests
,”
Surf. Coatings Technol.
,
403
.
32.
Lienhard
,
J.
,
Crook
,
C.
,
Azar
,
M. Z.
,
Hassani
,
M.
,
Mumm
,
D. R.
,
Veysset
,
D.
,
Apelian
,
D.
,
Nelson
,
K. A.
,
Champagne
,
V.
,
Nardi
,
A.
,
Schuh
,
C. A.
, and
Valdevit
,
L.
,
2020
, “
Surface Oxide and Hydroxide Effects on Aluminum Microparticle Impact Bonding
,”
Acta Mater.
,
197
, pp.
28
39
.
33.
Sun
,
Y.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2020
, “
In Situ Observations of Jetting in the Divergent Rebound Regime for High-Velocity Metallic Microparticle Impact
,”
Appl. Phys. Lett.
,
117
(
13
).
34.
Veysset
,
D.
,
Hsieh
,
A. J.
,
Kooi
,
S. E.
, and
Nelson
,
K. A.
,
2017
, “
Molecular Influence in High-Strain-Rate Microparticle Impact Response of Poly(Urethane Urea) Elastomers
,”
Polymer
,
123
, pp.
30
38
.
35.
Imbriglio
,
S. I.
,
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Aghasibeig
,
M.
,
Gauvin
,
R.
,
Nelson
,
K. A.
,
Schuh
,
C. A.
, and
Chromik
,
R. R.
,
2019
, “
Adhesion Strength of Titanium Particles to Alumina Substrates: A Combined Cold Spray and LIPIT Study
,”
Surf. Coatings Technol.
,
361
, pp.
403
412
.
36.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2019
, “
Impact-Bonding With Aluminum, Silver, and Gold Microparticles: Toward Understanding the Role of Native Oxide Layer
,”
Appl. Surf. Sci.
,
476
, pp.
528
532
.
37.
Hassani
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2020
, “
Material Hardness at Strain Rates Beyond 106 S−1 via High Velocity Microparticle Impact Indentation
,”
Scr. Mater.
,
177
, pp.
198
202
.
38.
Sun
,
Y.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2020
, “
The Transition From Rebound to Bonding in High-Velocity Metallic Microparticle Impacts: Jetting-Associated Power-Law Divergence
,”
J. Appl. Mech.
,
87
(
9
).
39.
Marsh
,
S. P.
,
1980
,
LASL Shock Hugoniot Data
,
Los Alamos Ser. Dyn. Mater. Prop.
40.
Lazicki
,
A.
,
Rygg
,
J. R.
,
Coppari
,
F.
,
Smith
,
R.
,
Fratanduono
,
D.
,
Kraus
,
R. G.
,
Collins
,
G. W.
,
Briggs
,
R.
,
Braun
,
D. G.
,
Swift
,
D. C.
, and
Eggert
,
J. H.
,
2015
, “
X-Ray Diffraction of Solid Tin to 1.2 TPa
,”
Phys. Rev. Lett.
,
115
(
7
), pp.
1
5
.
41.
Briggs
,
R.
,
Daisenberger
,
D.
,
Salamat
,
A.
,
Garbarino
,
G.
,
Mezouar
,
M.
,
Wilson
,
M.
, and
McMillan
,
P. F.
,
2012
, “
Melting of Sn to 1 Mbar
,”
J. Phys. Conf. Ser.
,
377
(
1
).
42.
Stevens
,
G. D.
,
Lutz
,
S. S.
,
Marshall
,
B. R.
,
Turley
,
W. D.
,
Veeser
,
L. R.
,
Furlanetto
,
M. R.
,
Hixson
,
R. S.
,
Holtkamp
,
D. B.
,
Jensen
,
B. J.
,
Rigg
,
P. A.
, and
Wilke
,
M. D.
,
2008
, “
Free-Surface Optical Scattering as an Indicator of the Shock-Induced Solid-Liquid Phase Transition in Tin
,”
J. Appl. Phys.
,
104
(
1
).
43.
Ravichandran
,
G.
,
2002
, “
On the Conversion of Plastic Work into Heat During High-Strain-Rate Deformation
,”
AIP Conference Proceedings
,
620
, pp.
557
562
.
44.
Knysh
,
P.
, and
Korkolis
,
Y. P.
,
2015
, “
Determination of the Fraction of Plastic Work Converted Into Heat in Metals
,”
Mech. Mater.
,
86
, pp.
71
80
.
45.
Rittel
,
D.
,
Zhang
,
L. H.
, and
Osovski
,
S.
,
2017
, “
The Dependence of the Taylor—Quinney Coefficient on the Dynamic Loading Mode
,”
Journal of the Mechanics and Physics of Solids
,
107
, pp.
96
114
.
46.
Brach
,
R. M.
,
Dunn
,
P. F.
, and
Li
,
X.
,
2000
, “
Experiments and Engineering Models of Microparticle Impact and Deposition
,”
J. Adhes.
,
74
(
1–4
), pp.
227
282
.
47.
Wu
,
C. Y.
,
Yuan
,
L.
, and
Thornton
,
C.
,
2003
, “
Rebound Behaviour of Spheres for Plastic Impacts
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
929
946
.
48.
Wu
,
C. Y.
,
Li
,
L. Y.
, and
Thornton
,
C.
,
2005
, “
Energy Dissipation During Normal Impact of Elastic and Elastic-Plastic Spheres
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
593
604
.
49.
Li
,
L. Y.
,
Wu
,
C. Y.
, and
Thornton
,
C.
,
2002
, “
A Theoretical Model for the Contact of Elastoplastic Bodies
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
216
(
4
), pp.
421
431
.
50.
Yildirim
,
B.
,
Yang
,
H.
,
Gouldstone
,
A.
, and
Müftü
,
S.
,
2017
, “
Rebound Mechanics of Micrometre-Scale, Spherical Particles in High-Velocity Impacts
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
473
(
2204
).
51.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
J. Appl. Mech.
,
64
(
2
), pp.
383
386
.
52.
Johnson
,
K. L.
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
53.
Hassani
,
M.
,
Veysset
,
D.
,
Sun
,
Y.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2020
, “
Microparticle Impact-Bonding Modes for Mismatched Metals: From Co-Deformation to Splatting and Penetration
,”
Acta Mater.
,
199
, pp.
480
494
.
You do not currently have access to this content.