Abstract

Dielectric elastomer (DE) actuators are deformable capacitors capable of a muscle-like actuation when charged. When subjected to voltage, DE membranes coated with compliant electrodes may form wrinkles due to the Maxwell stress. Here, we develop a numerical approach based on the finite element method (FEM) to predict the morphology of wrinkled DE membranes mounted on a rigid frame. The approach includes two steps: (I) pre-buckling and (II) post-buckling. In step I, the first buckling mode of the DE membrane is investigated by substituting the Maxwell stress with thermal stress in the built-in function of the FEM platform simulia abaqus. In step II, we use this first buckling mode as an artificial geometric imperfection to conduct the post-buckling analysis. For this purpose, we develop an equivalent model to simulate the mechanical behavior of DEs. Based on our approach, the thickness distribution and the thinnest site of the wrinkled DE membranes subjected to voltage are investigated. The simulations reveal that the crests/troughs of the wrinkles are the thinnest sites around the center of the membrane and corroborate these findings experimentally. Finally, we successfully predict the wrinkles of DE membranes mounted on an isosceles right triangle frame with various sizes of wrinkles generated simultaneously. These results shed light on the fundamental understanding of wrinkled dielectric elastomers but may also trigger new applications such as programmable wrinkles for optical devices or their prevention in DE actuators.

References

1.
O’Halloran
,
A.
,
O’Malley
,
F.
, and
McHugh
,
P.
,
2008
, “
A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges
,”
J. Appl. Phys.
,
104
(
7
), p.
071101
.
2.
Lu
,
T.
,
Ma
,
C.
, and
Wang
,
T.
,
2020
, “
Mechanics of Dielectric Elastomer Structures: A Review
,”
Extreme Mech. Lett.
,
38
, p.
100752
.
3.
Carpi
,
F.
,
Bauer
,
S.
, and
De Rossi
,
D.
,
2010
, “
Stretching Dielectric Elastomer Performance
,”
Science
,
330
(
6012
), pp.
1759
1761
.
4.
Koh
,
S. J. A.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Maximal Energy That Can Be Converted by a Dielectric Elastomer Generator
,”
Appl. Phys. Lett.
,
94
(
26
), p.
262902
.
5.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
6.
Liu
,
J.
,
Mao
,
G.
,
Huang
,
X.
,
Zou
,
Z.
, and
Qu
,
S.
,
2015
, “
Enhanced Compressive Sensing of Dielectric Elastomer Sensor Using a Novel Structure
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101004
.
7.
Mao
,
G.
,
Huang
,
X.
,
Liu
,
J.
,
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2015
, “
Dielectric Elastomer Peristaltic Pump Module With Finite Deformation
,”
Smart Mater. Struct.
,
24
(
7
), p.
075026
.
8.
Mao
,
G.
,
Wu
,
L.
,
Fu
,
Y.
,
Chen
,
Z.
,
Natani
,
S.
,
Gou
,
Z.
,
Ruan
,
X.
, and
Qu
,
S.
,
2018
, “
Design and Characterization of a Soft Dielectric Elastomer Peristaltic Pump Driven by Electromechanical Load
,”
IEEE/ASME Trans. Mechatron.
,
23
(
5
), pp.
2132
2143
.
9.
Li
,
T.
,
Zou
,
Z.
,
Mao
,
G.
,
Yang
,
X.
,
Liang
,
Y.
,
Li
,
C.
,
Qu
,
S.
,
Suo
,
Z.
, and
Yang
,
W.
,
2019
, “
Agile and Resilient Insect-Scale Robot
,”
Soft Rob.
,
6
(
1
), pp.
133
141
.
10.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
,
Zeng
,
Z.
,
Huang
,
Z.
,
Luo
,
Y.
,
Xie
,
T.
, and
Yang
,
W.
,
2017
, “
Fast-Moving Soft Electronic Fish
,”
Sci. Adv.
,
3
(
4
), p.
e1602045
.
11.
Chen
,
Y.
,
Zhao
,
H.
,
Mao
,
J.
,
Chirarattananon
,
P.
,
Helbling
,
E. F.
,
Hyun
,
N.-s. P.
,
Clarke
,
D. R.
, and
Wood
,
R. J.
,
2019
, “
Controlled Flight of a Microrobot Powered by Soft Artificial Muscles
,”
Nature
,
575
(
7782
), pp.
324
329
.
12.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
13.
Godaba
,
H.
,
Zhang
,
Z.-Q.
,
Gupta
,
U.
,
Chiang Foo
,
C.
, and
Zhu
,
J.
,
2017
, “
Dynamic Pattern of Wrinkles in a Dielectric Elastomer
,”
Soft Matter
,
13
(
16
), pp.
2942
2951
.
14.
Zhao
,
X.
, and
Wang
,
Q.
,
2014
, “
Harnessing Large Deformation and Instabilities of Soft Dielectrics: Theory, Experiment, and Application
,”
Appl. Phys. Rev.
,
1
(
2
), p.
021304
.
15.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
16.
Mao
,
G.
, and
Qu
,
S.
,
2019
,
Flexible and Stretchable Electronics: Materials, Design, and Devices
,
CRC Press
,
Boca Raton, FL
, pp.
345
381
.
17.
Lacour
,
S. P.
,
Wagner
,
S.
,
Huang
,
Z.
, and
Suo
,
Z.
,
2003
, “
Stretchable Gold Conductors on Elastomeric Substrates
,”
Appl. Phys. Lett.
,
82
(
15
), pp.
2404
2406
.
18.
An
,
L.
,
Wang
,
F.
,
Cheng
,
S.
,
Lu
,
T.
, and
Wang
,
T. J.
,
2015
, “
Experimental Investigation of the Electromechanical Phase Transition in a Dielectric Elastomer Tube
,”
Smart Mater. Struct.
,
24
(
3
), p.
035006
.
19.
Li
,
T.
,
Zou
,
Z.
,
Mao
,
G.
, and
Qu
,
S.
,
2013
, “
Electromechanical Bistable Behavior of a Novel Dielectric Elastomer Actuator
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041019
.
20.
Mao
,
G.
,
Wu
,
L.
,
Liang
,
X.
, and
Qu
,
S.
,
2017
, “
Morphology of Voltage-Triggered Ordered Wrinkles of a Dielectric Elastomer Sheet
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111005
.
21.
Shui
,
L.
,
Liu
,
Y.
,
Li
,
B.
,
Zou
,
C.
,
Tang
,
C.
,
Zhu
,
L.
, and
Chen
,
X.
,
2019
, “
Mechanisms of Electromechanical Wrinkling for Highly Stretched Substrate-Free Dielectric Elastic Membrane
,”
J. Mech. Phys. Solids
,
122
, pp.
520
537
.
22.
Wang
,
Q.
,
Gossweiler
,
G. R.
,
Craig
,
S. L.
, and
Zhao
,
X.
,
2014
, “
Cephalopod-Inspired Design of Electro-Mechano-Chemically Responsive Elastomers for On-Demand Fluorescent Patterning
,”
Nat. Commun.
,
5
(
1
), p.
4899
.
23.
Liu
,
J.
,
Mao
,
J.
,
Yin
,
T.
,
Zhong
,
D.
,
Liu
,
X.
,
Luo
,
Y.
, and
Qu
,
S.
,
2019
, “
Electrically Tunable Fast and Reversible Structural Coloration of Two-Dimensional Photonic Crystals
,”
Smart Mater. Struct.
,
28
(
11
), p.
115019
.
24.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25
), pp.
7727
7751
.
25.
Zhu
,
J.
,
Kollosche
,
M.
,
Lu
,
T.
,
Kofod
,
G.
, and
Suo
,
Z.
,
2012
, “
Two Types of Transitions to Wrinkles in Dielectric Elastomers
,”
Soft Matter
,
8
(
34
), pp.
8840
8846
.
26.
Kollosche
,
M.
,
Zhu
,
J.
,
Suo
,
Z.
, and
Kofod
,
G.
,
2012
, “
Complex Interplay of Nonlinear Processes in Dielectric Elastomers
,”
Phys. Rev. E
,
85
(
5
), p.
051801
.
27.
Liu
,
X.
,
Li
,
B.
,
Chen
,
H.
,
Jia
,
S.
, and
Zhou
,
J.
,
2016
, “
Voltage-Induced Wrinkling Behavior of Dielectric Elastomer
,”
J. Appl. Polym. Sci.
,
133
(
14
), p.
43258
.
28.
Greaney
,
P.
,
Meere
,
M.
, and
Zurlo
,
G.
,
2019
, “
The Out-of-Plane Behaviour of Dielectric Membranes: Description of Wrinkling and Pull-In Instabilities
,”
J. Mech. Phys. Solids
,
122
, pp.
84
97
.
29.
Mao
,
G.
,
Huang
,
X.
,
Diab
,
M.
,
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2015
, “
Nucleation and Propagation of Voltage-Driven Wrinkles in an Inflated Dielectric Elastomer Balloon
,”
Soft Matter
,
11
(
33
), pp.
6569
6575
.
30.
Mao
,
G.
,
Huang
,
X.
,
Diab
,
M.
,
Liu
,
J.
, and
Qu
,
S.
,
2016
, “
Controlling Wrinkles on the Surface of a Dielectric Elastomer Balloon
,”
Extreme Mech. Lett.
,
9
, pp.
139
146
.
31.
Mao
,
G.
,
Wu
,
L.
,
Fu
,
Y.
,
Liu
,
J.
, and
Qu
,
S.
,
2018
, “
Voltage-Controlled Radial Wrinkles of a Trumpet-Like Dielectric Elastomer Structure
,”
AIP Adv.
,
8
(
3
), p.
035314
.
32.
Li
,
K.
,
Wu
,
W.
,
Jiang
,
Z.
, and
Cai
,
S.
,
2017
, “
Voltage-Induced Wrinkling in a Constrained Annular Dielectric Elastomer Film
,”
ASME J. Appl. Mech.
,
85
(
1
), p.
011007
.
33.
Srivastava
,
A. K.
, and
Basu
,
S.
,
2020
, “
Mechanics of Reversible Wrinkling in a Soft Dielectric Elastomer
,”
Phys. Rev. E
,
101
(
4
), p.
040501
.
34.
Wang
,
S.
,
Decker
,
M.
,
Henann
,
D. L.
, and
Chester
,
S. A.
,
2016
, “
Modeling of Dielectric Viscoelastomers With Application to Electromechanical Instabilities
,”
J. Mech. Phys. Solids
,
95
, pp.
213
229
.
35.
Park
,
H. S.
,
Suo
,
Z.
,
Zhou
,
J.
, and
Klein
,
P. A.
,
2012
, “
A Dynamic Finite Element Method for Inhomogeneous Deformation and Electromechanical Instability of Dielectric Elastomer Transducers
,”
Int. J. Solids Struct.
,
49
(
15
), pp.
2187
2194
.
36.
Wong
,
W.
, and
Pellegrino
,
S.
,
2006
, “
Wrinkled Membranes III: Numerical Simulations
,”
J. Mech. Mater. Struct.
,
1
(
1
), pp.
63
95
.
37.
Foo
,
C. C.
,
Liu
,
J.
, and
Zhang
,
Z.-Q.
,
2018
, “
A Finite Element Method for Dielectric Elastomers Affected by Viscoelasticity and Current Leakage
,”
Int. J. Appl. Mech.
,
10
(
09
), p.
1850102
.
38.
Zhao
,
X.
, and
Suo
,
Z.
,
2008
, “
Method to Analyze Programmable Deformation of Dielectric Elastomer Layers
,”
Appl. Phys. Lett.
,
93
(
25
), p.
251902
.
39.
Qu
,
S.
, and
Suo
,
Z.
,
2012
, “
A Finite Element Method for Dielectric Elastomer Transducers
,”
Acta Mech. Solida Sin.
,
25
(
5
), pp.
459
466
.
40.
Zheng
,
L.
,
2009
,
Wrinkling of Dielectric Elastomer Membranes
,
California Institute of Technology
,
Pasadena, CA
.
41.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
42.
SIMULIA
,
2018
,
ABAQUS/Standard Version 6.18 Analysis User’s Manual
,
Dassault Systemes Simulia Corporation
,
Pawtucket, RI
.
43.
Nayyar
,
V.
,
Ravi-Chandar
,
K.
, and
Huang
,
R.
,
2014
, “
Stretch-Induced Wrinkling of Polyethylene Thin Sheets: Experiments and Modeling
,”
Int. J. Solids Struct.
,
51
(
9
), pp.
1847
1858
.
44.
Mao
,
G.
,
Xiang
,
Y.
,
Huang
,
X.
,
Hong
,
W.
,
Lu
,
T.
, and
Qu
,
S.
,
2018
, “
Viscoelastic Effect on the Wrinkling of an Inflated Dielectric-Elastomer Balloon
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071003
. .
45.
Liao
,
Z.
,
Hossain
,
M.
,
Yao
,
X.
,
Mehnert
,
M.
, and
Steinmann
,
P.
,
2020
, “
On Thermo-Viscoelastic Experimental Characterization and Numerical Modelling of VHB Polymer
,”
Int. J. Non-Linear Mech.
,
118
, p.
103263
.
You do not currently have access to this content.