Abstract

Mechanical properties of porous materials depend on their micro-architectural characteristics. Freeze casting is an effective method to fabricate micro-architectured porous scaffolds. Three key characteristics generated during freeze casting are wall thickness, number of domains at the cross section, and transverse bridges connecting adjacent walls. To specifically study the effect of these structural characteristics on the mechanics and anisotropic compressive properties of scaffolds, we utilize additive manufacturing, i.e., 3D printing, to fabricate strictly designed cubic scaffolds with varying one characteristic at a time. We then compare strength, toughness, resilience, stiffness, and strain to failure in three orthogonal directions of the scaffolds, including longitudinal and transverse directions. To compare these multidimensional mechanics in a single diagram, we use a previously developed radar chart method to evaluate different scaffolds and unravel the effect of the structural characteristics. We find that the multidimensional mechanics can be effectively tuned by the micro-architectural characteristics. Notably, the buckling resistance of the scaffolds depends on all three structural characteristics. Our results show that an increased number of domains leads to enhanced toughness in all three directions. Increasing wall thickness leads to enhanced mechanical properties but comes at the price of losing small-sized pores, which is not favored for certain applications. In addition, adding transverse bridges increases not only the transverse strength of the scaffolds but also the longitudinal strength as they also enhance the buckling resistance. Our study provides important insights into the structure–property relationships of 3D-printed micro-architectured porous scaffolds.

References

1.
Bauer
,
J.
,
Hengsbach
,
S.
,
Tesari
,
I.
,
Schwaiger
,
R.
, and
Kraft
,
O.
,
2014
, “
High-Strength Cellular Ceramic Composites With 3D Microarchitecture
,”
Proc. Natl. Acad. Sci. USA
,
111
(
7
), pp.
2453
2458
.
2.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.
3.
Torbati-Sarraf
,
H.
, and
Poursaee
,
A.
,
2019
, “
Corrosion Improvement of Carbon Steel in Concrete Environment Through Modification of Steel Microstructure
,”
J. Mater. Civ. Eng.
,
31
(
5
), p.
04019042
.
4.
Guo
,
N.
,
Shen
,
P.
,
Guo
,
R. F.
, and
Jiang
,
Q. C.
,
2019
, “
Optimization of the Properties in Al/SiC Composites by Tailoring Microstructure Through Gelatin Freeze Casting
,”
Mater. Sci. Eng. A
,
748
, pp.
286
293
.
5.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
466
(
2121
), pp.
2495
2516
.
6.
Gu
,
S.
,
Lu
,
T. J.
, and
Evans
,
A. G.
,
2001
, “
On the Design of Two-Dimensional Cellular Metals for Combined Heat Dissipation and Structural Load Capacity
,”
Int. J. Heat Mass Transfer
,
44
(
11
), pp.
2163
2175
.
7.
Porter Dr
,
M. M.
, and
McKittrick
,
J.
,
2014
, “
It’s Tough to be Strong: Advances in Bioinspired Structural Ceramicbased Materials
,”
Am. Ceram. Soc. Bull.
,
93
(
5
), pp.
18
24
.
8.
Currey
,
J. D.
,
2002
,
Bones: Structure and Mechanics
,
Princeton University Press
,
Princeton, NJ
.
9.
Porter
,
M. M.
,
Yeh
,
M.
,
Strawson
,
J.
,
Goehring
,
T.
,
Lujan
,
S.
,
Siripasopsotorn
,
P.
,
Meyers
,
M. A.
, and
McKittrick
,
J.
,
2012
, “
Magnetic Freeze Casting Inspired by Nature
,”
Mater. Sci. Eng. A
,
556
, pp.
741
750
.
10.
Scotti
,
K. L.
, and
Dunand
,
D. C.
,
2018
, “
Freeze Casting—A Review of Processing, Microstructure and Properties via the Open Data Repository, FreezeCasting.net
,”
Prog. Mater. Sci.
,
94
, pp.
243
305
.
11.
Deville
,
S.
,
2017
,
Ice-Templating and Freeze-Casting: Control of the Processes, Microstructure and Architecture
,
Springer
,
New York
.
12.
Deville
,
S.
,
2008
, “
Freeze-casting of Porous Ceramics: A Review of Current Achievements and Issues
,”
Adv. Eng. Mater.
,
10
(
3
), pp.
155
169
.
13.
Liu
,
X.
,
Rahaman
,
M.
, and
Fu
,
Q.
,
2011
, “
Oriented Bioactive Glass (13-93) Scaffolds With Controllable Pore Size by Unidirectional Freezing of Camphene-Based Suspensions: Microstructure and Mechanical Response
,”
Acta Biomater.
,
7
(
1
), pp.
406
416
.
14.
Deville
,
S.
,
2017
,
Freezing Colloids: Observations, Principles, Control, and Use
,
Springer
,
New York
.
15.
Deville
,
S.
,
Maire
,
E.
,
Lasalle
,
A.
,
Bogner
,
A.
,
Gauthier
,
C.
,
Leloup
,
J.
, and
Guizard
,
C.
,
2009
, “
In Situ X-Ray Radiography and Tomography Observations of the Solidification of Aqueous Alumina Particle Suspensions—Part I: Initial Instants
,”
J. Am. Ceram. Soc.
,
92
(
11
), pp.
2489
2496
.
16.
Deville
,
S.
,
Maire
,
E.
,
Lasalle
,
A.
,
Bogner
,
A.
,
Gauthier
,
C.
,
Leloup
,
J.
, and
Guizard
,
C.
,
2009
, “
In Situ X-Ray Radiography and Tomography Observations of the Solidification of Aqueous Alumina Particles Suspensions. Part II: Steady State
,”
J. Am. Ceram. Soc.
,
92
(
11
), pp.
2497
2503
.
17.
Flauder
,
S.
,
Gbureck
,
U.
, and
Müller
,
F. A.
,
2014
, “
Structure and Mechanical Properties of B-TCP Scaffolds Prepared by Ice-Templating With Preset Ice Front Velocities
,”
Acta Biomater.
,
10
(
12
), pp.
5148
5155
.
18.
Waschkies
,
T.
,
Oberacker
,
R.
, and
Hoffmann
,
M. J.
,
2009
, “
Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double-Side Cooling as a Novel Processing Route
,”
J. Am. Ceram. Soc.
,
92
(
s1
), pp.
S79
S84
.
19.
Porter
,
M. M.
,
Niksiar
,
P.
, and
Mckittrick
,
J.
,
2016
, “
Microstructural Control of Colloidal-Based Ceramics by Directional Solidification Under Weak Magnetic Fields
,”
J. Am. Ceram. Soc.
,
99
(
6
), pp.
1917
1926
.
20.
Niksiar
,
P.
,
2018
, “
Fabrication and Mechanical Properties of Micro Architectured 3D Scaffolds
,”
Ph.D. dissertation, Clemson University
.
21.
Jung
,
J. Y.
,
Naleway
,
S. E.
,
Maker
,
Y. N.
,
Kang
,
K. Y.
,
Lee
,
J.
,
Ha
,
J.
,
Hur
,
S. S.
,
Chien
,
S.
, and
McKittrick
,
J.
,
2019
, “
3D Printed Templating of Extrinsic Freeze-Casting for Macro-Microporous Biomaterials
,”
ACS Biomater. Sci. Eng.
,
5
(
5
), pp.
2122
2133
.
22.
Wadsworth
,
P.
,
Nelson
,
I.
,
Porter
,
D. L.
,
Raeymaekers
,
B.
, and
Naleway
,
S. E.
,
2020
, “
Manufacturing Bioinspired Flexible Materials Using Ultrasound Directed Self-Assembly and 3D Printing
,”
Mater. Des.
,
185
, p.
108243
.
23.
Luongo
,
A.
,
Falster
,
V.
,
Doest
,
M. B.
,
Ribo
,
M. M.
,
Eiriksson
,
E. R.
,
Pedersen
,
D. B.
, and
Frisvad
,
J. R.
,
2019
, “
Microstructure Control in 3D Printing With Digital Light Processing
,”
Comput. Graphics Forum
,
39
(
1
), pp.
347
359
.
24.
Kokkinis
,
D.
,
Schaffner
,
M.
, and
Studart
,
A. R.
,
2015
, “
Multimaterial Magnetically Assisted 3D Printing of Composite Materials
,”
Nat. Commun.
,
6
(
1
), p.
8643
.
25.
Yang
,
Y.
,
Chen
,
Z.
,
Song
,
X.
,
Zhang
,
Z.
,
Zhang
,
J.
,
Shung
,
K. K.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2017
, “
Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing
,”
Adv. Mater.
,
29
(
11
), pp.
1
8
.
26.
Chia
,
H. N.
, and
Wu
,
B. M.
,
2015
, “
Recent Advances in 3D Printing of Biomaterials
,”
J. Biol. Eng.
,
9
(
1
), pp.
1
14
.
27.
Studart
,
A. R.
,
2016
, “
Additive Manufacturing of Biologically-Inspired Materials
,”
Chem. Soc. Rev.
,
45
(
3
), pp.
359
376
.
28.
Huang
,
P.
,
Xia
,
Z.
, and
Cui
,
S.
,
2018
, “
3D Printing of Carbon Fiber-Filled Conductive Silicon Rubber
,”
Mater. Des.
,
142
, pp.
11
21
.
29.
Fan
,
Z.
,
Ho
,
J. C.
,
Takahashi
,
T.
,
Yerushalmi
,
R.
,
Takei
,
K.
,
Ford
,
A. C.
,
Chueh
,
Y.-L.
, and
Javey
,
A.
,
2009
, “
Toward the Development of Printable Nanowire Electronics and Sensors
,”
Adv. Mater.
,
21
(
37
), pp.
3730
3743
.
30.
Song
,
X.
,
Tetik
,
H.
,
Jirakittsonthon
,
T.
,
Parandoush
,
P.
,
Yang
,
G.
,
Lee
,
D.
,
Ryu
,
S.
,
Lei
,
S.
,
Weiss
,
M. L.
, and
Lin
,
D.
,
2019
, “
Biomimetic 3D Printing of Hierarchical and Interconnected Porous Hydroxyapatite Structures With High Mechanical Strength for Bone Cell Culture
,”
Adv. Eng. Mater.
,
21
(
1
), p.
1800678
.
31.
Bose
,
S.
,
Vahabzadeh
,
S.
, and
Bandyopadhyay
,
A.
,
2013
, “
Bone Tissue Engineering Using 3D Printing
,”
Mater. Today
,
16
(
12
), pp.
496
504
.
32.
Zorzetto
,
L.
, and
Ruffoni
,
D.
,
2019
, “
Wood-Inspired 3D-Printed Helical Composites With Tunable and Enhanced Mechanical Performance
,”
Adv. Funct. Mater.
,
29
(
1
), p.
1805888
.
33.
Huang
,
W.-C.
,
Chang
,
K.-P.
,
Wu
,
P.-H.
,
Wu
,
C.-H.
,
Lin
,
C.-C.
,
Chuang
,
C.-S.
,
Lin
,
D.-Y.
,
Liu
,
S.-H.
,
Horng
,
J.-B.
, and
Tsau
,
F.-H.
,
2016
, “
3D Printing Optical Engine for Controlling Material Microstructure
,”
Phys. Procedia
,
83
, pp.
847
853
.
34.
Fujiwara
,
M.
,
Oki
,
E.
,
Hamada
,
M.
,
Tanimoto
,
Y.
,
Mukouda
,
I.
, and
Shimomura
,
Y.
,
2001
, “
Magnetic Orientation and Magnetic Properties of a Single Carbon Nanotube
,”
J. Phys. Chem. A
,
105
(
18
), pp.
4385
4386
.
35.
Kamat
,
P. V.
,
Thomas
,
K. G.
,
Barazzouk
,
S.
,
Girishkumar
,
G.
,
Vinodgopal
,
K.
, and
Meisel
,
D.
,
2004
, “
Self-Assembled Linear Bundles of Single Wall Carbon Nanotubes and Their Alignment and Deposition as a Film in a DC Field
,”
J. Am. Chem. Soc.
,
126
(
34
), pp.
10757
10762
.
36.
Kuo
,
C. N.
,
Chua
,
C. K.
,
Peng
,
P. C.
,
Chen
,
Y. W.
,
Sing
,
S. L.
,
Huang
,
S.
, and
Su
,
Y. L.
,
2020
, “
Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy
,”
Virtual Phys. Prototyping
,
15
(
1
), pp.
120
129
.
37.
Niksiar
,
P.
,
Su
,
F. Y.
,
Frank
,
M. B.
,
Ogden
,
T.
,
Naleway
,
S.
,
Meyers
,
M.
,
McKittrick
,
J.
, and
Porter
,
M.
,
2019
, “
External Field Assisted Freeze Casting
,”
Ceramics
,
2
(
1
), pp.
208
234
.
38.
Flauder
,
S.
,
Sajzew
,
R.
, and
Müller
,
F. A.
,
2015
, “
Mechanical Properties of Porous β-Tricalcium Phosphate Composites Prepared by Ice-Templating and Poly(ε-Caprolactone) Impregnation
,”
ACS Appl. Mater. Interfaces
,
7
(
1
), pp.
845
851
.
39.
Porter
,
M. M.
, and
Niksiar
,
P.
,
2018
, “
Multidimensional Mechanics: Performance Mapping of Natural Biological Systems Using Permutated Radar Charts
,”
PLoS One
,
13
(
9
), pp.
1
18
.
40.
Niksiar
,
P.
,
Frank
,
M.
,
McKittrick
,
J.
, and
Porter
,
M.
,
2019
, “
Microstructural Evolution of Paramagnetic Materials by Magnetic Freeze Casting
,”
J. Mater. Res. Technol.
,
8
(
2
), pp.
2247
2254
.
41.
Deville
,
S.
,
Saiz
,
E.
, and
Tomsia
,
A. P.
,
2007
, “
Ice-Templated Porous Alumina Structures
,”
Acta Mater.
,
55
(
6
), pp.
1965
1974
.
42.
Porter
,
M. M.
,
Imperio
,
R.
,
Wen
,
M.
,
Meyers
,
M. A.
, and
McKittrick
,
J.
,
2014
, “
Bioinspired Scaffolds With Varying Pore Architectures and Mechanical Properties
,”
Adv. Funct. Mater.
,
24
(
14
), pp.
1978
1987
.
43.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1989
,
Theory of Elastic Buckling
, 2nd ed.,
Dover Publications, Inc.
,
New York
.
44.
Côté
,
F.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
,
2004
, “
The Out-of-Plane Compressive Behavior of Metallic Honeycombs
,”
Mater. Sci. Eng. A
,
380
(
1
), pp.
272
280
.
You do not currently have access to this content.