Abstract

Airborne salt accelerates the corrosion of steel materials and, thus, must be quantitatively evaluated for the management of steel structures. In Japan, the dry gauze method, which uses a gauze embedded in a wooden frame, is often used to evaluate the amount of airborne salt. However, its collection efficiency for salt particles has not been verified owing to the complex airflows around the device. Therefore, as a first step to clarify the collection efficiency, the authors simulated the flow field around the collection device using computational fluid dynamics (CFD). In this study, the gauze was modeled as a porous medium to reduce the computational costs. Wind tunnel tests were performed to obtain the pressure loss coefficients of the gauze, which is necessary for the porous media method. Subsequently, particle tracking was performed in the calculated flow field, and the collection efficiency was evaluated under the condition of a filtration efficiency of 100%. The flow fields around the device were accurately reproduced using the porous media model, which considered both the tangential and normal resistances of the gauze. This result suggests that the tangential resistance must be considered in the porous media model when the porosity of an object is small, even if the thickness is small. The dependence of collection efficiency on wind speed and direction was quantitatively evaluated. The results showed that the collection efficiency was greatly affected by the complicated flow field around the device due to the combination of the gauze and wooden frame.

References

1.
Ministry of Land, Infrastructure, Transport, and Tourism (MLITT)
,
2008
, “
Survey on the Replacement of Bridges IV
,” http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0444pdf/ks0444.pdf,
Accessed January 15, 2021 (in Japanese)
.
2.
Japan Road Association (JRA)
,
2012
,
Specification for Highway Bridges, II (Steel Bridge)
,
Japan Road Association
,
Tokyo
.
3.
Manders
,
A. M. M.
,
Schaap
,
M.
,
Querol
,
X.
,
Albert
,
M. F. M. A.
,
Vercauteren
,
J.
,
Kuhlbusch
,
T. A. J.
, and
Hoogerbrugge
,
R.
,
2010
, “
Sea Salt Concentrations Across the European Continent
,”
Atmos. Environ.
,
44
(
20
), pp.
2434
2442
.
4.
Noguchi
,
K.
,
Shirato
,
H.
, and
Yagi
,
T.
,
2017
, “
Numerical Evaluation of Sea Salt Amounts Deposited on Bridge Girders
,”
J. Bridge Eng.
,
22
(
7
), p.
04017021
.
5.
Cooperative Research Centre for Construction Innovation (CRCCI)
,
2005
, “
Case-Based Reasoning in Construction and Infrastructure Projects—Final Report
,”
Rep. No. 2002-059-B No. 16
,
Brisbane, Australia
.
6.
Zhou
,
M.
,
Liao
,
J.
, and
An
,
L.
,
2020
, “
Effect of Multiple Environmental Factors on the Adhesion and Diffusion Behaviors of Chlorides in a Bridge With Coastal Exposure: Long-Term Experimental Study
,”
J. Bridge Eng.
,
25
(
10
), p.
04020081
.
7.
Tørseth
,
K.
,
Hanssen
,
J. E.
, and
Semb
,
A.
,
1999
, “
Temporal and Spatial Variations of Airborne Mg, Cl, Na, Ca and K in Rural Areas of Norway
,”
Sci. Total Environ.
,
234
(
1–3
), pp.
75
85
.
8.
ISO 9225
,
2012
,
Corrosion of Metals and Alloy-Corrosivity of Atmospheres-Measurement of Pollution
,
International Organization for Standardization
,
Geneva
.
9.
Public Works Research Institute (PWRI)
,
1993
, “
Nation-Wide Investigation on Air-Borne Chloride (4) Relationship Between Geographical Distribution of Air-Borne Chloride and Wind
,”
Technical Memoranda of PWRI 3175 (in Japanese)
,
Tsukuba, Japan
.
10.
Japanese Industrial Standards (JIS)
,
1998
,
Determination of Pollution for Evaluation of Corrosivity of Atmospheres
,
Japanese Industrial Standards Committee
,
Tokyo
.
11.
Takebe
,
M.
,
Ohya
,
M.
,
Hirose
,
N.
,
Adachi
,
R.
,
Ago
,
Y.
,
Doi
,
K.
,
Iwatani
,
Y.
,
Kitagawa
,
N.
,
Kimura
,
Y.
,
Ochibe
,
K.
, and
Ota
,
J.
,
2010
, “
Difference in Precipitation Rates of Air-Borne Salts Collected by the Dry Gauze Method and the Doken Tank Method
,”
Corros. Sci.
,
52
(
9
), pp.
2928
2935
.
12.
Obata
,
M.
, and
Murakami
,
T.
,
2014
, “
Observation of Suspended Sea Salt Particles and Its Numerical Simulation as Estimation of Corrosive Environment
,”
J. Struct. Eng.
,
60A
, pp.
596
604
(in Japanese).
13.
Basnet
,
K.
,
Constantinescu
,
G.
,
Muste
,
M.
, and
Ho
,
H.
,
2015
, “
Method to Assess Efficiency and Improve Design of Snow Fences
,”
J. Eng. Mech.
,
141
(
3
), p.
04014136
.
14.
Baniamerian
,
Z.
, and
Mehdipour
,
R.
,
2017
, “
Studying Effects of Fence and Sheltering on the Aerodynamic Forces Experienced by Parabolic Trough Solar Collectors
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031103
.
15.
Kizilaslan
,
M. A.
,
Nasyrlayev
,
N.
,
Kurumus
,
A. T.
,
Savas
,
H.
,
Demirel
,
E.
, and
Aral
,
M. M.
,
2020
, “
Experimental and Numerical Evaluation of a Porous Baffle Design for Contact Tanks
,”
J. Environ. Eng.
,
146
(
7
), p.
04020063
.
16.
Andrzej
,
K.
, and
Joanna
,
Ł
,
2009
, “
Experimental and Modelling Study on Flow Resistance of Wire Gauzes
,”
Chem. Eng. Process.
,
48
(
3
), pp.
816
822
.
17.
Giannoulis
,
A.
,
Mistriotis
,
Α
, and
Briassoulis
,
D.
,
2010
, “
Experimental and Numerical Investigation of the Airflow Around a Raised Permeable Panel
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
12
), pp.
808
817
.
18.
Fan
,
J.
,
Lominé
,
F.
, and
Hellou
,
M.
,
2020
, “
Numerical Investigation of the Influence of Fiber Geometry on Filtration Performance With a Coupled Lattice Boltzmann–Discrete Element Method
,”
ASME J. Appl. Mech.
,
87
(
1
), p.
011005
.
19.
Kuroyanagi
,
T.
,
2017
, “
Investigating Air Leakage and Wind Pressure Coefficients of Single-Span Plastic Greenhouses Using Computational Fluid Dynamics
,”
Biosyst Eng.
,
163
, pp.
15
27
.
20.
Noda
,
M.
,
Teramoto
,
S.
,
Akagi
,
K.
, and
Nagao
,
F.
,
2014
, “
Decision Method of Pressure Loss Coefficient of Windbreak Nets for CFD
,”
Proceedings of 23rd National Symposium on Wind Engineering
,
Tokyo, Japan
,
Dec. 3–5
.
21.
Mahgoub
,
A. O.
, and
Ghani
,
S.
,
2021
, “
Numerical and Experimental Investigation of Utilizing the Porous Media Model for Windbreaks CFD Simulation
,”
Sustainable Cities Soc.
,
65
, p.
102648
.
22.
Tachikawa
,
M.
, and
Fukuyama
,
M.
,
1981
, “
Trajectories and Velocities of Typhoon-Generated Missiles, Part 1: Aerodynamic Characteristics of Flat Plates and Equations of Motion
,”
Trans. AIJ
,
302
, pp.
1
11
(in Japanese).
23.
Tomisaka
,
K.
, and
Maruyama
,
T.
,
2007
, “
Measurement of the Aerodynamic Characteristics of a Net
,”
J. Wind Eng.
,
32
(
3
), pp.
103
112
(in Japanese).
24.
Løland
,
G.
,
1993
, “
Current Forces on, and Water Flow Through and Around, Floating Fish Farms
,”
Aquacult. Int.
,
1
(
1
), pp.
72
89
.
25.
Honshu-Shikoku Bridge Authority
,
2001
,
Wind Resistant Design Standard for Honshu–Shikoku Bridges
,
Honshu–Shikoku Bridge Authority
,
Japan
.
26.
Giovannetti
,
L. M.
,
Banks
,
J.
,
Turnock
,
S. R.
, and
Boyd
,
S. W.
,
2017
, “
Uncertainty Assessment of Coupled Digital Image Correlation and Particle Image Velocimetry for Fluid-Structure Interaction Wind Tunnel Experiments
,”
J. Fluids Struct.
,
68
, pp.
125
140
.
27.
The Visualization Society of Japan
,
2002
,
Handbook of Particle Image Velocimetry
,
Morikita
,
Tokyo
.
28.
Straatman
,
A. G.
,
Gallego
,
N. C.
,
Yu
,
Q.
, and
Thompson
,
B. E.
,
2006
, “
Characterization of Porous Carbon Foam as a Material for Compact Recuperators
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
326
330
.
29.
Hong
,
S. W.
,
Lee
,
I. B.
, and
Seo
,
I. H.
,
2015
, “
Modelling and Predicting Wind Velocity Patterns for Windbreak Fence Design
,”
J. Wind Eng. Ind. Aerodyn.
,
142
, pp.
53
64
.
30.
OpenFOAM
,
2017
, “
The Open Source CFD Toolbox. User Guide Version 4.0, the OpenFOAM Foundation
,” https://openfoam.org/version/4-0/,
Accessed April 2, 2021
.
31.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments with the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
32.
Tominaga
,
Y.
,
Mochida
,
A.
,
Yoshie
,
R.
,
Kataoka
,
H.
,
Nozu
,
T.
,
Yoshikawa
,
M.
, and
Shirasawa
,
T.
,
2008
, “
AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment Around Buildings
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
10–11
), pp.
1749
1761
.
33.
Cadot
,
O.
,
2016
, “
Stochastic Fluid Structure Interaction of Three-Dimensional Plates Facing a Uniform Flow
,”
J. Fluid Mech.
,
794
, p.
R1
.
34.
Valizadeh
,
A.
, and
Rudman
,
M.
,
2017
, “
A Numerical Approach for Simulating Flow Through Thin Porous Media
,”
Eur. J. Mech. B: Fluids
,
65
, pp.
31
44
.
35.
Utsumi
,
R.
,
Yamamoto
,
H.
, and
Ichikawa
,
M.
,
1991
, “
Pressure Drop of Fluid Flow Through Electroformed Sieve
,”
Kagaku Kogaku Ronbunshu
,
17
(
2
), pp.
341
346
(in Japanese).
36.
Tsubokura
,
Y.
,
Ishiwatari
,
J.
,
Tokumasu
,
H.
,
Shirato
,
H.
,
Noguchi
,
K.
, and
Yagi
,
T.
,
2018
, “
Evaluation of Salt Particle Behavior Around Device of Dry Gauze Method by CFD
,”
Proceedings of 25th National Symposium on Wind Engineering
,
Tokyo, Japan
,
Dec. 3–5
, pp.
157
162
(in Japanese).
37.
Maruyama
,
T.
,
2008
, “
Large Eddy Simulation of Turbulent Flow Around a Windbreak
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
10–11
), pp.
1998
2006
.
38.
Greifzua
,
F.
,
Kratzscha
,
C.
,
Forgberb
,
T.
,
Lindnera
,
F.
, and
Schwarzea
,
R.
,
2016
, “
Assessment of Particle-Tracking Models for Dispersed Particle-Laden Flows Implemented in OpenFOAM and ANSYS FLUENT
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
30
43
.
39.
Corrsin
,
S.
, and
Lumley
,
J.
,
1956
, “
On the Equation of Motion for a Particle in Turbulent Fluid
,”
Appl. Sci. Res., Sect. A
,
6
(
2–3
), pp.
114
116
.
40.
Kurose
,
R.
,
Makino
,
H.
, and
Komori
,
S.
,
2002
, “
Fluid Forces on a Particle in Air Flows
,”
J. Soc. Powder Technol., Jpn.
,
39
(
5
), pp.
353
361
(in Japanese).
41.
Kato
,
H.
, and
Akai
,
Y.
,
2001
, “
A Simple Model for Estimating the Amount of Wind-Driven Sea Salt Over Coastal Area
,”
J. Agric. Meteorol.
,
57
(
2
), pp.
79
92
(in Japanese).
42.
Heinrich
,
M.
, and
Schwarze
,
R.
,
2020
, “
3D-Coupling of Volume-of-Fluid and Lagrangian Particle Tracking for Spray Atomization Simulation in OpenFOAM
,”
SoftwareX
,
11
, p.
100483
.
43.
Putnam
,
A.
,
1961
, “
Integrable Form of Droplet Drag Coefficient
,”
ARS J.
,
31
(
10
), pp.
1467
1468
.
44.
Athanasopoulou
,
E.
,
Tombrou
,
M.
,
Pandis
,
S. N.
, and
Russell
,
A. G.
,
2008
, “
The Role of Sea-Salt Emissions and Heterogeneous Chemistry in the Air Quality of Polluted Coastal Areas
,”
Atmos. Chem. Phys.
,
8
(
19
), pp.
5755
5769
.
You do not currently have access to this content.