Abstract

Multilayer graphene exhibits strong mechanical anisotropy in the nonlinear elastic regime, and tuning this mechanical anisotropy without damaging the graphene is a tough challenge. In this work, we propose an efficient strategy to tune the mechanical anisotropy of multilayer graphene via interlayer twist. The orientation-dependent strain–stress curve of monolayer graphene is described in analytical form, which is further generalized for predicting the mechanical anisotropy of twisted multilayer graphene by introducing a twist-induced “phase shift.” These predictions are supported by atomistic simulations. It is found that the strong nonlinear mechanical anisotropy of multilayer graphene can be effectively tuned and even eliminated via the twist-induced phase shift. These findings are finally generalized for other layered crystals.

References

References
1.
Li
,
R.
,
Shao
,
Q.
,
Gao
,
E.
, and
Liu
,
Z.
,
2020
, “
Elastic Anisotropy Measure for Two-Dimensional Crystals
,”
Extreme Mech. Lett.
,
34
, p.
100615
. 10.1016/j.eml.2019.100615
2.
Zhang
,
C.
,
Wei
,
N.
,
Gao
,
E.
, and
Sun
,
Q.
,
2020
, “
Poisson’s Ratio of Two-Dimensional Hexagonal Crystals: A Mechanics Model Study
,”
Extreme Mech. Lett.
,
38
, p.
100748
. 10.1016/j.eml.2020.100748
3.
Liu
,
F.
,
Ming
,
P. M.
, and
Li
,
J.
,
2007
, “
Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene Under Tension
,”
Phys. Rev. B
,
76
(
6
), p.
064120
. 10.1103/PhysRevB.76.064120
4.
Liu
,
X. Y.
,
Wang
,
F. C.
, and
Wu
,
H. A.
,
2013
, “
Anisotropic Propagation and Upper Frequency Limitation of Terahertz Waves in Graphene
,”
Appl. Phys. Lett.
,
103
(
7
), p.
071904
. 10.1063/1.4818683
5.
Gao
,
E.
,
Lin
,
S.
,
Qin
,
Z.
,
Buehler
,
M.
,
Feng
,
X.
, and
Xu
,
Z.
,
2018
, “
Mechanical Exfoliation of Two-Dimensional Materials
,”
J. Mech. Phys. Solids
,
115
, pp.
248
262
. 10.1016/j.jmps.2018.03.014
6.
Liu
,
Y.
,
Dobrinsky
,
A.
, and
Yakobson
,
B. I.
,
2010
, “
Graphene Edge From Armchair to Zigzag: The Origins of Nanotube Chirality?
Phys. Rev. Lett.
,
105
(
23
), p.
235502
. 10.1103/PhysRevLett.105.235502
7.
Kim
,
K.
,
Artyukhov
,
V. I.
,
Regan
,
W.
,
Liu
,
Y.
,
Crommie
,
M. F.
,
Yakobson
,
B. I.
, and
Zettl
,
A.
,
2012
, “
Ripping Graphene: Preferred Directions
,”
Nano Lett.
,
12
(
1
), pp.
293
297
. 10.1021/nl203547z
8.
Lee
,
J.-H.
,
Loya
,
P. E.
,
Lou
,
J.
, and
Thomas
,
E. L.
,
2014
, “
Dynamic Mechanical Behavior of Multilayer Graphene via Supersonic Projectile Penetration
,”
Science
,
346
(
6213
), pp.
1092
1096
. 10.1126/science.1258544
9.
Zhang
,
Y. Y.
, and
Gu
,
Y. T.
,
2013
, “
Mechanical Properties of Graphene: Effects of Layer Number, Temperature and Isotope
,”
Comp. Mater. Sci.
,
71
, pp.
197
200
. 10.1016/j.commatsci.2013.01.032
10.
Choi
,
J. S.
,
Kim
,
J.-S.
,
Byun
,
I.-S.
,
Lee
,
D. H.
,
Lee
,
M. J.
,
Park
,
B. H.
,
Lee
,
C.
,
Yoon
,
D.
,
Cheong
,
H.
,
Lee
,
K. H.
,
Son
,
Y.-W.
,
Park
,
J. Y.
, and
Salmeron
,
M.
,
2011
, “
Friction Anisotropy-Driven Domain Imaging on Exfoliated Monolayer Graphene
,”
Science
,
333
(
6042
), pp.
607
610
. 10.1126/science.1207110
11.
Qi
,
Z.
,
Campbell
,
D. K.
, and
Park
,
H. S.
,
2014
, “
Atomistic Simulations of Tension-Induced Large Deformation and Stretchability in Graphene Kirigami
,”
Phys. Rev. B
,
90
(
24
), p.
245437
. 10.1103/PhysRevB.90.245437
12.
Wei
,
N.
,
Chen
,
Y.
,
Cai
,
K.
,
Zhao
,
J.
,
Wang
,
H.-Q.
, and
Zheng
,
J.-C.
,
2016
, “
Thermal Conductivity of Graphene Kirigami: Ultralow and Strain Robustness
,”
Carbon
,
104
, pp.
203
213
. 10.1016/j.carbon.2016.03.043
13.
Hua
,
Z.
,
Zhao
,
Y.
,
Dong
,
S.
,
Yu
,
P.
,
Liu
,
Y.
,
Wei
,
N.
, and
Zhao
,
J.
,
2017
, “
Large Stretchability and Failure Mechanism of Graphene Kirigami Under Tension
,”
Soft Matter
,
13
(
47
), pp.
8930
8939
. 10.1039/C7SM01574G
14.
López-Polín
,
G.
,
Ortega
,
M.
,
Vilhena
,
J. G.
,
Alda
,
I.
,
Gomez-Herrero
,
J.
,
Serena
,
P. A.
,
Gomez-Navarro
,
C.
, and
Pérez
,
R.
,
2017
, “
Tailoring the Thermal Expansion of Graphene via Controlled Defect Creation
,”
Carbon
,
116
, pp.
670
677
. 10.1016/j.carbon.2017.02.021
15.
Gao
,
E.
, and
Xu
,
Z.
,
2015
, “
Thin-Shell Thickness of Two-Dimensional Materials
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121012
. 10.1115/1.4031568
16.
Qin
,
H.
,
Sorkin
,
V.
,
Pei
,
Q.-X.
,
Liu
,
Y.
, and
Zhang
,
Y.-W.
,
2020
, “
Failure in Two-Dimensional Materials: Defect Sensitivity and Failure Criteria
,”
ASME J. Appl. Mech.
,
87
(
3
), p.
030802
. 10.1115/1.4045005
17.
Volokh
,
K. Y.
,
2012
, “
On the Strength of Graphene
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
064501
. 10.1115/1.4005582
18.
Fang
,
Y.
,
Wang
,
Y.
,
Imtiaz
,
H.
,
Liu
,
B.
, and
Gao
,
H.
,
2019
, “
Energy-Ratio-based Measure of Elastic Anisotropy
,”
Phys. Rev. Lett.
,
122
(
4
), p.
045502
. 10.1103/PhysRevLett.122.045502
19.
Dong
,
S.
,
Xia
,
Y.
,
Huang
,
R.
, and
Zhao
,
J.
,
2020
, “
Modulating Mechanical Anisotropy of Two-Dimensional Materials by Controlling Their Defects
,”
Carbon
,
158
, pp.
77
88
. 10.1016/j.carbon.2019.11.085
20.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
. 10.1006/jcph.1995.1039
21.
Lindsay
,
L.
, and
Broido
,
D. A.
,
2010
, “
Optimized Tersoff and Brenner Empirical Potential Parameters for Lattice Dynamics and Phonon Thermal Transport in Carbon Nanotubes and Graphene
,”
Phys. Rev. B
,
81
(
20
), p.
205441
. 10.1103/PhysRevB.81.205441
22.
Kolmogorov
,
A. N.
, and
Crespi
,
V. H.
,
2005
, “
Registry-Dependent Interlayer Potential for Graphitic Systems
,”
Phys. Rev. B
,
71
(
23
), p.
235415
. 10.1103/PhysRevB.71.235415
23.
Ouyang
,
W.
,
Mandelli
,
D.
,
Urbakh
,
M.
, and
Hod
,
O.
,
2018
, “
Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials
,”
Nano Lett.
,
18
(
9
), pp.
6009
6016
. 10.1021/acs.nanolett.8b02848
24.
Liu
,
Z.
,
Yang
,
J.
,
Grey
,
F.
,
Liu
,
J. Z.
,
Liu
,
Y.
,
Wang
,
Y.
,
Yang
,
Y.
,
Cheng
,
Y.
, and
Zheng
,
Q.
,
2012
, “
Observation of Microscale Superlubricity in Graphite
,”
Phys. Rev. Lett.
,
108
(
20
), p.
205503
. 10.1103/PhysRevLett.108.205503
25.
Liu
,
Z.
,
Liu
,
J. Z.
,
Cheng
,
Y.
,
Li
,
Z.
,
Wang
,
L.
, and
Zheng
,
Q.
,
2012
, “
Interlayer Binding Energy of Graphite: A Mesoscopic Determination From Deformation
,”
Phys. Rev. B
,
85
(
20
), p.
205418
. 10.1103/PhysRevB.85.205418
You do not currently have access to this content.