Abstract

For two combinations of a dimensionless rotational damping parameter and a dimensionless inertial coupling parameter, we consider free response of a rectilinearly vibrating linearly sprung primary mass inertially coupled to damped rotation of a second mass, for which Gendelman et al. (2012, “Dynamics of an Eccentric Rotational Nonlinear Energy Sink,” ASME J. Appl. Mech. 79(1), 011012) developed equations of motion in the context of a rotational nonlinear energy sink (NES) with no direct damping of the rectilinear motion. For dimensionless initial rectilinear displacements comparable with those considered by Gendelman et al., we identify a region in the motionless projection of the initial condition space (i.e., for zero values of the initial rectilinear and rotational velocities) in which every initial condition leads to a previously unrecognized zero-energy solution, with all initial energy dissipated by rotation. We also show that the long-time nonrotating, rectilinear solutions of the type found by Gendelman et al. are (orbitally) stable only in limited ranges of amplitude. Finally, we show how direct viscous damping of rectilinear motion of the primary mass affects dissipation, and that results with no direct rectilinear dissipation provide excellent guidance for performance when direct rectilinear dissipation occurs. Some applications are discussed.

References

References
1.
Gendelman
,
O. V.
,
Sigalov
,
G.
,
Manevitch
,
L. I.
,
Mane
,
M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Dynamics of an Eccentric Rotational Nonlinear Energy Sink
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011012
. 10.1115/1.4005402
2.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Alternation of Regular and Chaotic Dynamics in a Simple Two-Degree-of-Freedom System With Nonlinear Inertial Coupling
,”
Chaos
,
22
(
1
), p.
013118
. 10.1063/1.3683480
3.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially Coupled Rotational Nonlinear Energy Sink
,”
Nonlin. Dyn.
,
69
(
4
), pp.
1693
1704
. 10.1007/s11071-012-0379-1
4.
Tumkur
,
R. K. R.
,
Pearlstein
,
A. J.
,
Masud
,
A.
,
Gendelman
,
O. V.
,
Blanchard
,
A.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2017
, “
Intermediate Reynolds Number Flow Past a Sprung Circular Cylinder With an Internal Nonlinear Rotational Dissipative Element
,”
J. Fluid Mech.
,
828
, pp.
196
235
. 10.1017/jfm.2017.504
5.
Blanchard
,
A. B.
,
Bergman
,
L. A.
,
Vakakis
,
A. F.
, and
Pearlstein
,
A. J.
,
2019
, “
Coexistence of Multiple Long-Time Solutions for Two-Dimensional Laminar Flow Past a Linearly Sprung Circular Cylinder With a Rotational Nonlinear Energy Sink
,”
Phys. Rev. Fluids
,
4
(
5
), p.
054401
. 10.1103/PhysRevFluids.4.054401
6.
Blanchard
,
A. B.
, and
Pearlstein
,
A. J.
,
2020
, “
On-Off Switching of Vortex Shedding and Vortex-Induced Vibration in Cross-Flow Past a Circular Cylinder by Locking or Releasing a Rotational Nonlinear Energy Sink
,”
Phys. Rev. Fluids
,
5
(
2
), p.
023902
. 10.1103/PhysRevFluids.5.023902
7.
Saeed
,
A. S.
,
AL-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Cantwell
,
W. J.
,
2019
, “
Rotary-Impact Nonlinear Energy Sink for Shock Mitigation: Analytical and Numerical Investigations
,”
Arch. Appl. Mech.
,
90
(
3
), pp.
495
521
. 10.1007/s00419-019-01622-0
8.
Tondl
,
A.
,
Ruijgrok
,
T.
,
Verhulst
,
F.
, and
Nabergoj
,
R.
,
2000
,
Autoparametric Resonance in Mechanical Systems
,
Cambridge University Press
,
New York
.
9.
Marquardt
,
D.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
,
11
(
2
), pp.
431
441
. 10.1137/0111030
10.
Kovacic
,
I.
,
Rand
,
D. H.
, and
Sah
,
S. M.
,
2018
, “
Mathieu’s Equation and Its Generalizations: Overview of Stability Charts and Their Features
,”
ASME Appl. Mech. Rev.
,
70
(
2
), p.
020802
. 10.1115/1.4039144
11.
Wierschem
,
N. E.
,
Quinn
,
D. D.
,
Hubbard
,
S. A.
,
AL-Shudeifat
,
M. A.
,
McFarland
,
D. M.
,
Luo
,
J.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Passive Damping Enhancement of a Two-Degree-of-Freedom System Through a Strongly Nonlinear Two-Degree-of-Freedom Attachment
,”
J. Sound Vib.
,
331
(
25
), pp.
5393
5407
. 10.1016/j.jsv.2012.06.023
12.
Luo
,
J.
,
Wierschem
,
N. E.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
,
Quinn
,
D. D.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Design, Simulation, and Large-Scale Testing of an Innovative Vibration Mitigation Device Employing Essentially Nonlinear Elastomeric Springs
,”
Earthquake Eng. Struct. Dyn.
,
43
(
12
), pp.
1829
1851
. 10.1002/eqe.2424
13.
Lee
,
J. H.
, and
Bernitsas
,
M. M.
,
2011
, “
High-Damping, High-Re VIV Tests for Energy Harvesting Using the VIVACE Converter
,”
Ocean Eng.
,
38
(
16
), pp.
1697
1712
. 10.1016/j.oceaneng.2011.06.007
14.
Deshmukh
,
S. R.
, and
Vlachos
,
D. G.
,
2005
, “
Novel Micromixers Driven by Flow Instabilities: Application to Post-Reactors
,”
AIChE J.
,
51
(
12
), pp.
3193
3204
. 10.1002/aic.10591
15.
Ortega-Casanova
,
J.
,
2017
, “
On the Onset of Vortex Shedding From 2D Confined Rectangular Cylinders Having Different Aspect Ratios: Applications to Promote Mixing Fluids
,”
Chem. Eng. Proc.: Proc. Intensif.
,
120
, pp.
81
92
. 10.1016/j.cep.2017.06.014
You do not currently have access to this content.