Abstract

Analytical solutions to the classical Mandel’s problem play an important role in understanding Biot’s theory of poroelasticity and validating geomechanics numerical algorithms. In this paper, existing quasi-static poroelastic solutions to this problem are extended to the dual-porosity dual-permeability poroelastodynamics solution which considers inertial effects for a naturally fractured and fluid-saturated sample subjected to a harmonic excitation. The solution can generate the associated elastodynamics and poroelastodynamics solutions as special cases. A naturally fractured Ohio sandstone is selected to demonstrate the newly derived solution. The elastodynamics, poroelastodynamics, and dual-porosity poroelastodynamics solutions are compared to illustrate the effects of fluid–solid coupling and the natural fractures. The rock sample behaves in drained condition at low frequencies when the oscillation has insignificant impedance effects on fluid movement. Compared to the other two solutions, the dual-porosity solution predicts the largest amplitude of displacement at low frequencies when the response is predominantly controlled by the stiffness. The Mandel–Cryer effect is observed in both rock matrix and fractures and occurs at a lower frequency in rock matrix because it is easier to build up pore pressure in lower-permeability rock matrix. At high frequencies, pore fluids are trapped and the rock sample behaves in an undrained state. At the resonance frequencies, the elastodynamics solution provides the largest amplitude of displacement, followed by the poroelastodynamics and dual-porosity poroelastodynamics solution. This is because of the dissipation caused by the presence of both fluid and fractures.

References

1.
Mandel
,
J.
,
1953
, “
Consolidation des Sols (étude Mathématique)
,”
Geotechnique
,
3
, pp.
287
299
. 10.1680/geot.1953.3.7.287
2.
Skempton
,
A.
,
1954
, “
The Pore-Pressure Coefficients A and B
,”
Géotechnique
,
4
(
4
), pp.
143
147
. 10.1680/geot.1954.4.4.143
3.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
. 10.1063/1.1712886
4.
Cryer
,
C. A.
,
1963
, “
Comparison of the Three-Dimensional Consolidation Theories of Biot and Terzaghi
,”
Q. J. Mech. Appl. Math
,
16
, pp.
401
412
. 10.1093/qjmam/16.4.401
5.
Abousleiman
,
Y.
,
Cheng
,
A.
,
Cui
,
L.
,
Detournay
,
E.
, and
Roegiers
,
J. C.
,
1996
, “
Mandel’s Problem Revisited
,”
Géotechnique
,
46
(
2
), pp.
187
195
. 10.1680/geot.1996.46.2.187
6.
Wheeler
,
M.
, and
Gai
,
X.
,
2007
, “
Iteratively Coupled Mixed and Galerkin Finite Element Methods for Poro- Elasticity
,”
Numer. Meth. Partial Differ. Equ.
,
23
(
4
), pp.
785
797
. 10.1002/num.20258
7.
Ferronato
,
M.
,
Castelletto
,
N.
, and
Gambolati
,
G.
,
2010
, “
A Fully Coupled 3-D Mixed Finite Element Model of Biot Consolidation
,”
J. Comput. Phys.
229
, pp.
4813
4830
. 10.1016/j.jcp.2010.03.018
8.
Dana
,
S.
, and
Wheeler
,
M.
,
2018
, “
Convergence Analysis of Fixed Stress Split Iterative Scheme for Anisotropic Poroelasticity with Tensor Biot Parameter
,”
Comput. Geosci
,
22
(
5
), pp.
1219
1230
. 10.1007/s10596-018-9748-2
9.
Nguyen
,
V.
, and
Abousleiman
,
Y.
,
2010
, “
Poromechanics Solutions to Plane Strain and Axisymmetric Mandel-Type Problems in Dual-Porosity and Dual-Permeability Medium
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011002
. 10.1115/1.3172146
10.
Hoang
,
S.
, and
Abousleiman
,
Y.
,
2012
, “
Correspondence Principle Between Anisotropic Poroviscoelasticity and Poroelasticity Using Micromechanics and Application to Compression of Orthotropic Rectangular Strips
,”
J. Appl. Phys.
,
112
, p.
044907
. 10.1063/1.4748293
11.
Tran
,
M.
, and
Abousleiman
,
Y.
,
2013
, “
Anisotropic Porochemoelectroelastic Mandel's Problem Solutions for Applications in Reservoir Modeling and Laboratory Characterization
,”
Mech. Res. Commun.
47
, pp.
89
96
. 10.1016/j.mechrescom.2012.10.001
12.
Mehrabian
,
A.
, and
Abousleiman
,
Y.
,
2014
, “
Generalized Biot’s Theory and Mandel’s Problem of Multiple-Porosity and Multiple-Permeability Poroelasticity
,”
J. Geophys. Res. Solid Earth
,
119
, pp.
2745
2763
. 10.1002/2013JB010602
13.
Liu
,
C.
, and
Abousleiman
,
Y.
,
2020
, “
Generalized Solution to the Anisotropic Mandel’s Problem
,”
Int. J. Num. Anal. Meth. Geo.
10.1002/nag.3128
14.
Kameo
,
Y.
,
Adachi
,
T.
, and
Hojo
,
M.
,
2008
, “
Transient Response of Fluid Pressure in a Poroelastic Material Under Uniaxial Cyclic Loading
,”
J. Mech. Phy. Solids
,
56
, pp.
1794
1805
. 10.1016/j.jmps.2007.11.008
15.
Armstrong
,
G.
,
Lar
,
M.
, and
Mow
,
C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
J Biomech Eng
,
106
, pp.
165
173
. 10.1115/1.3138475
16.
Abousleiman
,
Y.
,
Cheng
,
AH-D
,
Jiang
,
C.
, and
Roegiers
,
J-C
,
1996
, “
Poroviscoelastic Analysis of Borehole and Cylinder Problems
,”
Acta Mechanica.
,
119
(
1
), pp.
199
219
. 10.1007/BF01274248
17.
Bunger
,
A.
,
2010
, “
The Mandel-Cryer Effect in Chemoporoelasticity
,”
Int. J. Num. Anal. Meth. Geo.
,
34
(
14
), pp.
1479
1511
. 10.1002/nag.867
18.
Liu
,
C.
,
Hoang
,
S.
, and
Abousleiman
,
Y.
,
2018
, “
Responses of Chemically Active and Naturally Fractured Shale Under Time-Dependent Mechanical Loading and Ionic Solution Exposure
,”
Int. J. Num. Anal. Meth. Geo.
,
42
, pp.
34
69
. 10.1002/nag.2713
19.
Cheng
,
A. H.-D.
, and
Detournay
,
E.
,
1988
, “
A Direct Boundary Element Method for Plane Strain Poroelasticity
,”
Int. J. Num. Anal. Meth. Geo.
,
12
, pp.
551
572
. 10.1002/nag.1610120508
20.
Cui
,
L.
,
Cheng
,
A. H.-D.
,
Kaliakin
,
V.
,
Abousleiman
,
Y.
, and
Roegiers
,
J.-C.
,
1996
, “
Finite Element Analyses of Anisotropic Poroelasticity: A Generalized Mandel’s Problem and an Inclined Borehole Problem
,”
Int. J. Num. Anal. Meth. Geo.
,
20
, pp.
381
401
.
21.
Love
,
A.
,
1892
,
A Treatise on the Mathematical Theory of Elasticity
,
Cambridge University Press
,
Cambridge
.
22.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
,”
J. Acou. Soc. Amer.
,
28
(
2
), pp.
168
178
. 10.1121/1.1908239
23.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acou. Soc. Amer.
,
28
(
2
), pp.
179
191
. 10.1121/1.1908241
24.
Garg
,
S.
,
Nayfeh
,
A.
, and
Good
,
A.
,
1974
, “
Compressional Waves in Fluid-Saturated Elastic Porous Media
,”
J. Acou. Soc. Amer
,
45
, p.
1968
.
25.
Paul
,
S.
,
1976
, “
On the Disturbance Produced in a Semi-Infinite Poroelastic Medium by a Surface Load
,”
Pure Appl. Geophys.
,
114
, pp.
615
627
. 10.1007/BF00875655
26.
Burridge
,
R.
, and
Vargas
,
C.
,
1979
, “
The Fundamental Solution in Dynamic Poroelasticity
,”
Geophys. J. R. Astron. Soc.
,
58
, pp.
61
90
. 10.1111/j.1365-246X.1979.tb01010.x
27.
Norris
,
A.
,
1985
, “
Radiation From a Point Source and Scattering Theory in a Fluid-Saturated Porous Solid
,”
J. Acoust. Soc. Am.
,
77
, pp.
2012
2023
. 10.1121/1.391773
28.
Schanz
,
M.
,
2009
, “
Poroelastodynamics: Linear Models, Analytical Solutions, and Numerical Methods
,”
ASME Appl. Mech. Rev.
,
2009
(
62
), p.
030803
. 10.1115/1.3090831
29.
Ding
,
B.
,
Cheng
,
A. H.-D.
, and
Chen
,
Z.
,
2013
, “
Fundamental Solutions of Poroelastodynamics in Frequency Domain Based on Wave Decomposition
,”
J. Appl. Mech
,
2013
(
80
), p.
061021
. 10.1115/1.4023692
30.
Cheng
,
A. H.-D.
,
Badmus
,
T.
, and
Beskos
,
D.
,
1991
, “
Integral Equation for Dynamic Poroelasticity in Frequency Domain With BEM Solution
,”
J. Eng. Mech.
,
117
(
5
), pp.
1136
1157
. 10.1061/(ASCE)0733-9399(1991)117:5(1136)
31.
Mehrabian
,
A.
,
Liu
,
C.
,
2020
, “
Mandel’s Problem Reloaded
,”
submitted
.
32.
Winkler
,
K.
,
1985
, “
Dispersion Analysis of Velocity and Attenuation in Berea Sandstone
,”
J. Geo. Res.
,
90
(
B8
), pp.
6793
6800
. 10.1029/JB090iB08p06793
33.
Berryman
,
J.
, and
Wang
,
H.
,
2001
, “
“Dispersion in Poroelastic Systems
,”
Phy. Rev. E
,
64
, p.
011303
. 10.1103/PhysRevE.64.011303
34.
Barenblatt
,
G.
,
Zheltov
,
I.
, and
Kochina
,
I.
,
1960
, “
Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata]
,”
J. Appl. Math. Mech.
,
24
(
5
), pp.
1286
1303
. 10.1016/0021-8928(60)90107-6
35.
Aifantis
,
E.
,
1980
, “
On the Problem of Dissusion in Solids
,”
Acta Mech.
,
37
, pp.
265
296
. 10.1007/BF01202949
36.
Wilson
,
R.
, and
Aifantis
,
E.
,
1984
, “
A Double Porosity Model for Acoustic Wave Propagation in Fractured-Porous Rock
,”
Int. J. Eng. Sci.
,
22
(
8–10
), pp.
1209
1217
. 10.1016/0020-7225(84)90124-1
37.
Beskos
,
D.
, and
Aifantis
,
E.
,
1986
, “
On the Theory of Consolidation With Double Porosity-II
,”
Int. J. Eng. Sci.
,
24
(
11
), pp.
1697
1716
. 10.1016/0020-7225(86)90076-5
38.
Berryman
,
J.
, and
Wang
,
H.
,
2000
, “
Elastic Wave Propagation and Attenuation in a Double-Porosity Dual-Permeability Medium
,”
Int. J. Rock Mech. Min. Sci.
,
37
, pp.
63
78
. 10.1016/S1365-1609(99)00092-1
39.
Pride
,
S.
, and
Berryman
,
J.
,
2003
, “
Linear Dynamics of Double-Porosity Dual-Permeability Materials. I. Governing Equations and Acoustic Attenuation
,”
Phy. Rev. E
,
68
, p.
036603
. 10.1103/PhysRevE.68.036603
40.
Pride
,
S.
, and
Berryman
,
J.
,
2003
, “
Linear Dynamics of Double-Porosity Dual-Permeability Materials. II. Fluid Transport Equations
,”
Phy. Rev. E
,
68
, p.
036604
. 10.1103/PhysRevE.68.036604
41.
Boutin
,
C.
, and
Royer
,
P.
,
2015
, “
On Models of Double Porosity Poroelastic Media
,”
Geophys. J. Int.
,
203
, pp.
1694
1725
. 10.1093/gji/ggv378
42.
Boutin
,
C.
, and
Venegas
,
R.
,
2016
, “
Assessment of the Effective Parameters of Dual Porosity Deformable Media
,”
Mech. Mater.
,
102
, pp.
26
46
. 10.1016/j.mechmat.2016.08.005
43.
Chen
,
J.
,
1994
, “
Time Domain Fundamental Solution to Biot’s Complete Equations of Dynamic Poroelasticity. Part I: Two-Dimensional Solution
,”
Int. J. Solids Struc.
,
31
(
10
), pp.
1447
1490
. 10.1016/0020-7683(94)90186-4
44.
Ba
,
J.
,
Carcione
,
J.
, and
Nie
,
J.
,
2011
, “
Biot-Rayleigh Theory of Wave Propagation in Double-Porosity Media
,”
J. Geo. Res.
,
116
, p.
B06202
.
45.
Beskos
,
D.
,
Vgenopoulou
,
I.
, and
Providakis
,
C.
,
1989
, “
High Frequency Wave Propagation in Nearly Saturated Porous Media
,”
Acta Mech.
,
85
, pp.
115
123
.
46.
Dai
,
Z.
,
Kuang
,
Z.
, and
Zhao
,
S.
,
2006
, “
Rayleigh Waves in a Double Porosity Half-Space
,”
J. Sound Vib.
,
298
(
1–2
), pp.
319
332
. 10.1016/j.jsv.2006.05.035
47.
Zheng
,
P.
, and
Cheng
,
A. H.-D.
,
2017
, “
One-Dimensional Analytical Solution for Mesoscopic Flow Induced Damping in a Double-Porosity Dual-Permeability Material
,”
Int. J. Numer. Anal. Meth. Geomech
,
41
, pp.
1413
1429
. 10.1002/nag.2676
48.
Vgeopoulou
,
I.
, and
Beskos
,
D.
,
1992
, “
Dynamics of Saturated Rocks-IV: Column and Borehole Problems
,”
J. Eng. Mech.
,
118
(
9
), pp.
1795
1813
. 10.1061/(ASCE)0733-9399(1992)118:9(1795)
49.
Zheng
,
P.
,
Cheng
,
A. H.-D.
, and
Li
,
H.
,
2017
, “
Dynamic Green’s Functions and Integral Equations for a Double-Porosity Dual-Permeability Poroelastic Material
,”
ASME J. Appl. Mech.
,
84
, p.
061009
. 10.1115/1.4036439
50.
Mehrabian
,
A.
,
Abousleiman
,
Y.
,
Mapstone
,
T.
, and
El-Amm
,
C.
,
2015
, “
Dual-Porosity Poroviscoelasticity and Quantitative Hydromechanical Characterization of the Brain Tissue With Experimental Hydrocephalus Data
,”
J. Theo. Bio.
,
384
, pp.
19
32
. 10.1016/j.jtbi.2015.08.001
51.
Liu
,
C.
,
Hoang
,
S.
,
Tran
,
M.
,
Abousleiman
,
Y.
, and
Ewy
,
R.
,
2017
, “
Poroelastic Dual-Porosity Dual-Permeability Simulation of Pressure Transmission Test on Chemically Active Shale
,”
J. Eng. Mech.
,
143
(
6
), p.
04017016
. 10.1061/(ASCE)EM.1943-7889.0001210
52.
Liu
,
C.
, and
Abousleiman
,
Y.
,
2018
, “
Multiporosity/Multipermeability Inclined-Wellbore Solutions With Mudcake Effects
,”
SPE J.
,
23
(
05
), pp.
1723
1747
. 10.2118/191135-PA
53.
Berryman
,
J.
,
2002
, “
Extension of Poroelastic Analysis to Double-Porosity Materials: New Technique in Microgeomechanics
,”
J. Eng. Mech.
,
128
(
8
), pp.
840
847
. 10.1061/(ASCE)0733-9399(2002)128:8(840)
54.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(
10
), pp.
3125
3131
. 10.1063/1.1728579
55.
Cheng
,
A. H.-D.
,
2016
,
Poroelasticity
,
Springer International Publishing Switzerland
,
Cham, Switzerland
.
56.
Müller
,
T.
,
Gurevich
,
B.
, and
Lebedev
,
M.
,
2010
, “
Seismic Wave Attenuation and Dispersion Resulting From Wave-Induced Flow in Porous Rocks—A Review
,”
Geophysics
,
75
(
5
), pp.
75A147
75A164
. 10.1190/1.3463417
57.
Guo
,
J.
, and
Gurevich
,
B.
,
2020
, “
Effects of Coupling Between Wave-Induced Fluid Flow and Elastic Scattering on P-Wave Dispersion and Attenuation in Rocks With Aligned Fractures
,”
J. Geophy. Res. Solid Earth
,
125
(
3
), p.
e2019JB018685
.
58.
Guo
,
J.
,
Gurevich
,
B.
, and
Shuai
,
D.
,
2020
, “
Frequency-Dependent P-Wave Anisotropy due to Scattering in Rocks With Aligned Fractures
,”
Geophysics
,
85
(
2
), pp.
MR97
MR105
. 10.1190/geo2019-0353.1
59.
Liu
,
C.
, and
Abousleiman
,
Y.
,
2017
, “
Shale Dual-Porosity Dual-Permeability Poromechanical and Chemical Properties Extracted From Experimental Pressure Transmission Tests
,”
J. Eng. Mech.
,
143
(
9
), p.
04017107
. 10.1061/(ASCE)EM.1943-7889.0001333
60.
Liu
,
C.
,
Mehrabian
,
A.
, and
Abousleiman
,
Y.
,
2017
, “
Poroelastic Dual-Porosity/Dual-Permeability After-Closure Pressure-Curves Analysis in Hydraulic Fracturing
,”
SPE J.
,
22
(
01
), pp.
198
218
. 10.2118/181748-PA
You do not currently have access to this content.