Abstract

Flexible polymer-based neural probes are promising tools to interfaces with brain tissue since the low stiffness and thin geometry of these probes make them compliant to soft tissue in a manner that allows for reducing the inflammation responses. However, the same properties make flexible probes susceptible to bending and buckling during insertion, which make the implantation impossible. This paper provides a brief review of recent advances in mechanics strategies to assist the insertion of flexible probes. The basic concept of each strategy is summarized with advantages and disadvantages briefly discussed. These results provide a guide for reliable implantations of flexible neural probes for chronic brain electrophysiological recording and clinical treatment of neurological disorders.

References

1.
Perlmutter
,
J. S.
, and
Mink
,
J. W.
,
2006
, “
Deep Brain Stimulation
,”
Annu. Rev. Neurosci.
,
29
(
1
), pp.
229
257
. 10.1146/annurev.neuro.29.051605.112824
2.
Hochberg
,
L. R.
,
Bacher
,
D.
,
Jarosiewicz
,
B.
,
Masse
,
N. Y.
,
Simeral
,
J. D.
,
Vogel
,
J.
,
Haddadin
,
S.
,
Liu
,
J.
,
Cash
,
S. S.
,
Smagt
,
P.
, and
Donoghue
,
J. P.
,
2012
, “
Reach and Grasp by People With Tetraplegia Using a Neutrally Controlled Robotic Arm
,”
Nature
,
485
(
7398
), pp.
372
375
. 10.1038/nature11076
3.
Yoon
,
T. H.
,
Hwang
,
E. J.
,
Shin
,
D. Y.
,
Park
,
S. I.
,
Oh
,
S. J.
,
Jung
,
S. C.
,
Shin
,
H. C.
, and
Kim
,
S. J.
,
2000
, “
A Micromachined Silicon Depth Probe for Multichannel Neural Recording
,”
IEEE Trans. Biomed. Eng.
,
47
(
8
), pp.
1082
1087
. 10.1109/10.855936
4.
Marton
,
G.
,
Baracskay
,
P.
,
Cseri
,
B.
,
Plosz
,
B.
,
Juhassz
,
G.
, and
Pongracz
,
A.
,
2016
, “
A Silicon-Based Microelectrode Array With a Microdrive for Monitoring Brainstem Regions of Freely Moving Rats
,”
J. Neural Eng.
,
13
(
2
), p.
026025
. 10.1088/1741-2560/13/2/026025
5.
Cambell
,
P. K.
,
Jones
,
K. E.
,
Huber
,
R. J.
,
Horch
,
K. W.
, and
Normann
,
R. A.
,
1991
, “
A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array
,”
IEEE Trans. Biomed. Eng.
,
38
(
8
), pp.
758
768
. 10.1109/10.83588
6.
Johnson
,
M. D.
,
Franklin
,
R. K.
,
Scott
,
K. A.
,
Brown
,
R. B.
, and
Kipke
,
D. R.
,
2005
, “
Neural Probes for Concurrent Detection of Neurochemical and Electrophysiological Signals in Vivo
,”
2005 IEEE Engineering in Medicine and Biology 27th Annual Conference
,
Shanghai
,
Jan. 17–18
, pp.
7325
7328
.
7.
Mohanty
,
A.
,
Li
,
Q.
,
Tadayon
,
M. A.
,
Roberts
,
S. P.
,
Bhatt
,
G. R.
,
Shim
,
E.
,
Ji
,
X.
,
Cardenas
,
J.
,
Miller
,
S. A.
,
Kepecs
,
A.
, and
Lipson
,
M.
,
2020
, “
Reconfigurable Nanophotonic Silicon Probes for Sub-Millisecond Deep-Brain Optical Stimulation
,”
Nat. Biomed. Eng.
,
4
, pp.
223
231
. 10.1038/s41551-020-0516-y
8.
Fekete
,
Z.
,
Csernai
,
M.
,
Kocsis
,
K.
,
Horvath
,
A. C.
,
Pongracz
,
A.
, and
Bartho
,
P.
,
2017
, “
Simultaneous In vivo Recording of Local Brain Temperature and Electrophysiological Signals With a Novel Neural Probe
,”
J. Neural Eng.
,
14
(
3
), p.
034001
. 10.1088/1741-2552/aa60b1
9.
Du
,
J.
,
Roukes
,
M. L.
, and
Masmanidis
,
S. C.
,
2009
, “
Dual-Side and Three 4-Dimensional Microelectrode Arrays Fabricated From Ultra-Thin Silicon Substrates
,”
J. Micromech. Microeng.
,
19
(
7
), p.
075008
. 10.1088/0960-1317/19/7/075008
10.
Rousche
,
P. J.
, and
Normann
,
R. A.
,
1999
, “
Chronic Intracortical Microstimulation (ICMS) of Cat Sensory Cortex Using the Utah Intracortical Electrode Array
,”
IEEE Trans. Rehabil. Eng.
,
7
(
1
), pp.
56
68
. 10.1109/86.750552
11.
Salatino
,
J. W.
,
Ludwig
,
K. A.
,
Kozazi
,
T. D. Y.
, and
Purcell
,
E. K.
,
2017
, “
Gilal Responses to Implanted Electrodes in the Brain
,”
Nat. Biomed. Eng.
,
1
(
11
), pp.
826
877
. 10.1038/s41551-017-0154-1
12.
Polikov
,
V. S.
,
Tresco
,
P. A.
, and
Reichert
,
W. M.
,
2005
, “
Response of Brain Tissue to Chronically Implanted Neural Electrodes
,”
J. Neurosci. Methods
,
148
(
1
), pp.
1
18
. 10.1016/j.jneumeth.2005.08.015
13.
Gutowski
,
S. M.
,
Templeman
,
K. L.
,
South
,
A. B.
,
Gaulding
,
J. C.
,
Shoemaker
,
J. T.
,
Laplaca
,
M. C.
,
Bellamkonda
,
R. V.
,
Lyon
,
L. A.
, and
Garcia
,
A. J.
,
2014
, “
Host Response to Microgel Coatings on Neural Electrodes Implanted in the Brain
,”
J. Biomed. Mater. Res., Part A
,
102A
(
5
), pp.
1486
1499
. 10.1002/jbm.a.34799
14.
Turner
,
J. N.
,
Shain
,
W.
,
Szarowski
,
D. H.
,
Andersen
,
M.
,
Martins
,
S.
,
Isaacson
,
M.
, and
Craighead
,
H.
,
1999
, “
Cerebral Astrocyte Response to Micromachined Silicon Implants
,”
Exp. Neurol.
,
156
(
1
), pp.
33
49
. 10.1006/exnr.1998.6983
15.
Pei
,
P.
,
Shi
,
Y.
,
Yang
,
G.
, and
Gao
,
C.
,
2018
, “
Fracture Analyses of Soft Materials With Hard Inclusion
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
111003
. 10.1115/1.4040694
16.
Tijero
,
M.
,
Gabriel
,
G.
,
Caro
,
J.
,
Altuna
,
A.
,
Hernandez
,
R.
,
Villa
,
R.
,
Berganzo
,
J.
,
Blanco
,
F. J.
,
Salido
,
R.
, and
Fernandez
,
L. J.
,
2009
, “
SU-8 Microprobe With Microelectrodes for Monitoring Electrical Impedance in Living Tissues
,”
Biosens.Bioelectron.
,
24
(
8
), pp.
2410
2416
. 10.1016/j.bios.2008.12.019
17.
Altuna
,
A.
,
Gabriel
,
G.
,
Prida
,
L. M.
,
Tijero
,
M.
,
Guimera
,
A.
,
Berganzo
,
J.
,
Salido
,
R.
,
Villa
,
R.
, and
Fernandez
,
L. J.
,
2010
, “
SU-8-Based Microneedles for In vitro Neural Applications
,”
J. Micromech. Microeng.
,
20
(
6
), p.
064014
. 10.1088/0960-1317/20/6/064014
18.
Altuna
,
A.
,
Bellistri
,
E.
,
Cid
,
E.
,
Aivar
,
P.
,
Gal
,
B.
,
Berganzo
,
J.
,
Gabriel
,
G.
,
Guimera
,
A.
,
Villa
,
R.
,
Fernandez
,
L. J.
, and
Prida
,
M.
,
2013
, “
SU-8 Based Microprobes for Simultaneous Neural Depth Recording and Drug Delivery in the Brain
,”
Lab Chip
,
13
(
7
), pp.
1422
1430
. 10.1039/c3lc41364k
19.
Lee
,
S. E.
,
Jun
,
S. B.
,
Lee
,
H. J.
,
Kim
,
J.
,
Lee
,
S. W.
,
Im
,
C.
,
Shin
,
H. C.
,
Chang
,
J. W.
, and
Kim
,
S. J.
,
2012
, “
A Flexible Depth Probe Using Liquid Crystal Polymer
,”
IEEE Trans. Biomed. Eng.
,
59
(
7
), pp.
2085
2094
. 10.1109/TBME.2012.2196274
20.
Burton
,
A.
,
Obaid
,
S. N.
,
Vazquez-Guardado
,
A.
,
Schmit
,
M. B.
,
Stuart
,
T.
,
Cai
,
L.
,
Chen
,
Z.
,
Kandela
,
I.
,
Haney
,
C. R.
,
Waters
,
E. A.
,
Cai
,
H.
,
Rogers
,
J. A.
,
Lu
,
L.
, and
Gutruf
,
P.
,
2020
, “
Wireless, Battery-Free Subdermally Implantable Photometry Systems for Chronic Recording of Neural Dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
6
), pp.
2835
2848
. 10.1073/pnas.1920073117
21.
Lu
,
L.
,
Gutruf
,
P.
,
Xia
,
L.
,
Bhatti
,
D. L.
,
Wang
,
X.
,
Vazquez-Guardado
,
A.
,
Ning
,
X.
,
Shen
,
X.
,
Sang
,
T.
,
Ma
,
R.
,
Pakeltis
,
G.
,
Sobczak
,
G.
,
Zhang
,
H.
,
Seo
,
D.
,
Xue
,
M.
,
Yin
,
L.
,
Chanda
,
D.
,
Sheng
,
X.
,
Bruchas
,
M. R.
, and
Rogers
,
J. A.
,
2018
, “
Wireless Optoelectronic Photometers for Monitoring Neuronal Dynamics in the Deep Brain
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
7
), pp.
E1374
E1383
. 10.1073/pnas.1718721115
22.
Mercanzini
,
A.
,
Cheung
,
K.
,
Buhl
,
D. L.
,
Boers
,
M.
,
Maillard
,
A.
,
Colin
,
P.
,
Bensadoun
,
A.
,
Arnaud
,
B.
, and
Renaud
,
P.
,
2008
, “
Demonstration of Cortical Recording Using Novel Flexible Polymer Neural Probes
,”
Sens. Actuators, A
,
143
(
1
), pp.
90
96
. 10.1016/j.sna.2007.07.027
23.
Yu
,
H.
,
Zheng
,
N.
,
Wang
,
W.
,
Wang
,
S.
,
Zheng
,
X.
, and
Li
,
Z.
,
2013
, “
Electroplated Nickel Multielectrode Microprobes With Flexible Parylene Cable for Neural Recording and Stimulation
,”
J. Microelectromech. Syst.
,
22
(
5
), pp.
1199
1206
. 10.1109/JMEMS.2013.2262591
24.
Sim
,
K.
,
Rao
,
Z.
,
Li
,
Y.
,
Yang
,
D.
, and
Yu
,
C.
,
2018
, “
Curvy Surface Conformal Ultra-Thin Transfer Printed Si Optoelectronic Penetrating Microprobe Arrays
,”
npj. Flex. Electron.
,
2
(
1
), p.
2
. 10.1038/s41528-017-0015-8
25.
Takeuchi
,
S.
,
Suzuki
,
T.
,
Mabuchi
,
K.
, and
Fujita
,
H.
,
2004
, “
3D Flexible Multichannel Neural Probe Array
,”
J. Micromech. Microeng.
,
14
(
1
), pp.
104
107
. 10.1088/0960-1317/14/1/014
26.
Fomani
,
A. A.
, and
Mansour
,
R. R.
,
2011
, “
Fabrication and Characterization of the Flexible Neural Microprobes With Improved Structural Design
,”
Sens. Actuators, A
,
168
(
2
), pp.
233
241
. 10.1016/j.sna.2011.04.024
27.
Lai
,
H. Y.
,
Liao
,
L. D.
,
Lin
,
C. T.
,
Hsu
,
J. H.
,
He
,
X.
,
Chen
,
Y. Y.
,
Chang
,
J. Y.
,
Chen
,
H. F.
,
Tsang
,
S.
, and
Shih
,
Y. Y.
,
2012
, “
Design, Simulation and Experimental Validation of a Novel Flexible Neural Probe for Deep Brain Stimulation and Multichannel Recording
,”
J. Neural Eng.
,
9
(
3
), p.
036001
. 10.1088/1741-2560/9/3/036001
28.
Lee
,
K. K.
,
He
,
J.
,
Singh
,
A.
,
Massia
,
S.
,
Ehteshami
,
G.
,
Kim
,
B.
, and
Raupp
,
G.
,
2004
, “
Polyimide-Based Intracortical Neural Implant With Improved Structural Stiffness
,”
J. Micromech. Microeng.
,
14
(
1
), pp.
32
37
. 10.1088/0960-1317/14/1/305
29.
Lee
,
K.
,
He
,
J.
,
Clement
,
R.
,
Massia
,
S.
, and
Kim
,
B.
,
2004
, “
Biocompatible Benzocyclobutene (BCB)-Based Neural Implants With Micro-Fluidic Channel
,”
Biosens.Bioelectron.
,
20
(
2
), pp.
404
407
. 10.1016/j.bios.2004.02.005
30.
Seymour
,
J. P.
,
Langhals
,
N. B.
,
Anderson
,
D. J.
, and
Kipke
,
D. R.
,
2011
, “
Novel Multi-Sided, Microelectrode Arrays for Implantable Neural Applications
,”
Biomed.Microdevices.
,
13
(
3
), pp.
441
451
. 10.1007/s10544-011-9512-z
31.
Chen
,
C. H.
,
Lin
,
C. T.
,
Hsu
,
W. L.
,
Chang
,
Y. C.
,
Yeh
,
S. R.
,
Li
,
L. J.
, and
Yao
,
D. J.
,
2013
, “
A Flexible Hydrophilic-Modified Graphene Microprobe for Neural and Cardiac Recording,” Nanomed.-Nanotechnol
,”
Biol. Med.
,
9
(
5
), pp.
600
604
. 10.1016/j.nano.2012.12.004
32.
Takeuchi
,
S.
,
Ziegler
,
D.
,
Yoshida
,
Y.
,
Mabuchi
,
K.
, and
Suzuki
,
T.
,
2005
, “
Parylene Flexible Neural Probes Integrated With Microfluidic Channels
,”
Lab Chip
,
5
(
5
), pp.
519
523
. 10.1039/b417497f
33.
Wu
,
F.
,
Im
,
M.
, and
Yoon
,
E.
,
2011
, “
A Flexible Fish-Bone-Shaped Neural Probe Strengthened by Biodegradable Silk Coating for Enhanced Biocompatibility
,”
2011, Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference
,
Beijing
,
June 5–9
, pp.
966
969
.
34.
Wu
,
F.
,
Tien
,
L.
,
Chen
,
F.
,
Kaplan
,
D.
,
Berke
,
J.
, and
Yoon
,
E.
,
2013
, “
A Multi-Shank Silk-Backed Parylene Neural Probe for Reliable Chronic Recording
,”
2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems
,
Barcelona, Spain
,
June 16–20
, pp.
888
891
.
35.
Wu
,
F.
,
Tien
,
L. W.
,
Chen
,
F.
,
Berke
,
J. D.
,
Kaplan
,
D. L.
, and
Yoon
,
E.
,
2015
, “
Silk-Backed Structural Optimization of High-Density Flexible Intracortical Neural Probes
,”
J. Microelectromech. Syst.
,
24
(
1
), pp.
62
69
. 10.1109/JMEMS.2014.2375326
36.
Tien
,
L. W.
,
Wu
,
F.
,
Tang-Schomer
,
M. D.
,
Yoon
,
E.
,
Omenetto
,
F. G.
, and
Kaplan
,
D. L.
,
2013
, “
Silk as a Multifunctional Biomaterial Substrate for Reduced Glial Scarring Around Brain-Penetrating Electrodes
,”
Adv. Funct. Mater.
,
23
(
25
), pp.
3185
3193
. 10.1002/adfm.201203716
37.
Guan
,
S.
,
Wang
,
J.
,
Gu
,
X.
,
Zhao
,
Y.
,
Hou
,
R.
,
Fan
,
H.
,
Zou
,
L.
,
Gao
,
L.
,
Du
,
M.
,
Li
,
C.
, and
Fang
,
Y.
,
2019
, “
Elastocapillary Self-Assembled Neurotassels for Stable Neural Activity Recordings
,”
Sci. Adv.
,
5
(
3
), p.
eaav2842
. 10.1126/sciadv.aav2842
38.
Cheng
,
M. Y.
,
Tan
,
K. L.
,
Yee
,
T. B.
, and
Je
,
M.
,
2013
, “
Three-Dimensional Flexible Polyimide Based Probe Array With Stiffness Improvement by Using Biodegradable Polymer
,”
Adv. Mat. Res.
,
651
, pp.
517
522
. 10.4028/www.scientific.net/amr.651.517
39.
Kato
,
Y.
,
Saito
,
I.
,
Hoshino
,
T.
,
Suzuki
,
T.
, and
Mabuchi
,
K.
,
2006
, “
Preliminary Study of Multichannel Flexible Neural Probes Coated With Hybrid Biodegradable Polymer
,”
2006 International Conference of the IEEE Engineering in Medicine and Biology Society
. pp.
660
663
.
40.
Seo
,
K. J.
,
Artoni
,
P.
,
Qiang
,
Y.
,
Zhong
,
Y.
,
Han
,
X.
,
Shi
,
Z.
,
Yao
,
W.
,
Fagiolini
,
M.
, and
Fang
,
H.
,
2019
, “
Transparent, Flexible, Penetrating Microelectrode Arrays With Capabilities of Single-Unit Electrophysiology
,”
Adv. Biosys.
,
3
(
3
), p.
1800276
. 10.1002/adbi.201800276
41.
Pas
,
J.
,
Rutz
,
A. L.
,
Quilichini
,
P. P.
,
Slezia
,
A.
,
Ghestem
,
A.
,
Kaszas
,
A.
,
Donahue
,
M. J.
,
Curto
,
V. F.
,
O’Connor
,
R. P.
,
Bernard
,
C.
,
Williamson
,
A.
, and
Malliaras
,
G. G.
,
2018
, “
A Bilayered PVA/PLGA-Bioresorbable Shuttle to Improve the Implantation of Flexible Neural Probes
,”
J. Neural Eng.
,
15
(
6
), p.
065001
. 10.1088/1741-2552/aadc1d
42.
Ceyssens
,
F.
,
Carmona
,
M. B.
,
Kil
,
D.
,
Deprez
,
M.
,
Tooten
,
E.
,
Nuttin
,
B.
,
Takeoka
,
A.
,
Balschun
,
D.
,
Kraft
,
M.
, and
Puers
,
R.
,
2019
, “
Chronic Neural Recording With Probes of Subcellular Cross-Section Using 0.06mm2 Dissolving Microneedles as Insertion Device
,”
Sens. Actuators, B
,
284
, pp.
369
376
. 10.1016/j.snb.2018.12.030
43.
Xiang
,
Z.
,
Yen
,
S. C.
,
Xue
,
N.
,
Sun
,
T.
,
Tsang
,
W. M.
,
Zhang
,
S.
,
Liao
,
L. D.
,
Thakor
,
N. V.
, and
Lee
,
C.
,
2014
, “
Ultra-Thin Flexible Polyimide Neural Probe Embedded in a Dissolvable Maltose-Coated Microneedle
,”
J. Micromech. Microeng.
,
24
(
6
), p.
065015
. 10.1088/0960-1317/24/6/065015
44.
Hassler
,
C.
,
Guy
,
J.
,
Nietzschmann
,
M.
,
Staiger
,
J. F.
, and
Stieglitz
,
T.
,
2011
, “
Chronic Intracortical Implantation of Saccharose-Coated Flexible Shaft Electrodes Into the Cortex of Rats
,”
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston
, MA,
Aug. 30–Sept. 3
, pp.
644
647
.
45.
Kil
,
D.
,
Carmona
,
M. B.
,
Ceyssens
,
F.
,
Deprez
,
M.
,
Brancato
,
L.
,
Nuttin
,
B.
,
Balschun
,
D.
, and
Puers
,
R.
,
2019
, “
Dextran as a Resorbable Coating Material for Flexible Neural Probes
,”
Micromachines
,
10
(
1
), p.
61
. 10.3390/mi10010061
46.
Singh
,
A.
,
Zhu
,
H.
, and
He
,
J.
,
2004
, “
Improving Mechanical Stiffness of Coated Benzocyclobutene (BCB) Based Neural Implant
,”
The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
San Francisco
,
CA, Sept. 1–5
.
47.
Agorelius
,
J.
,
Tsanakalis
,
F.
,
Friberg
,
A.
,
Thorbergsson
,
P. T.
,
Pettersson
,
L. M. E.
, and
Schouenborg
,
J.
,
2015
, “
An Array of Highly Flexible Electrodes With a Tailored Configuration Locked by Gelatin During Implantation—Initial Evaluation in Cortex Cerebri of Awake Rats
,”
Front. Neurosci.
,
9
, p.
331
. 10.3389/fnins.2015.00331
48.
Lind
,
G.
,
Linsmeier
,
C. E.
,
Thelin
,
J.
, and
Schouenborg
,
J.
,
2010
, “
Gelatine-Embedded Electrodes-a Novel Biocompatible Vehicle Allowing Implantation of Highly Flexible Microelectrodes
,”
J. Neural Eng.
,
7
(
4
), p.
046005
. 10.1088/1741-2560/7/4/046005
49.
Lo
,
M.
,
Wang
,
S.
,
Singh
,
S.
,
Damodaran
,
V. B.
,
Kaplan
,
H. M.
,
Kohn
,
J.
,
Shreiber
,
D. I.
, and
Zahn
,
J. D.
,
2015
, “
Coating Flexible Probes With an Ultra Fast Degrading Polymer to Aid in Tissue Insertion
,”
Biomed. Microdevices.
,
17
(
2
), p.
34
. 10.1007/s10544-015-9927-z
50.
Lewitus
,
D.
,
Smith
,
K. L.
,
Shain
,
W.
, and
Kohn
,
J.
,
2011
, “
Ultrafast Resorbing Polymers for Use as Carriers for Cortical Neural Probes
,”
Acta Biomater
,
7
(
6
), pp.
2483
2491
. 10.1016/j.actbio.2011.02.027
51.
Gilgunn
,
P. J.
,
Khilwani
,
R.
,
Kozai
,
T. D. Y.
,
Weber
,
D. J.
,
Cui
,
X. T.
,
Erdos
,
G.
,
Ozdoganlar
,
O. B.
, and
Fedder
,
G. K.
,
2012
, “
An Ultra-Compliant, Scalable Neural Probe With Molded Biodissolvable Delivery Vehicle
,”
Proceedings of IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)
,
Paris, France
,
Jan. 29–Feb. 2
, pp.
56
59
.
52.
Khilwani
,
R.
,
Gilgunn
,
P. J.
,
Kozai
,
T. D. Y.
,
Ong
,
X. C.
,
Korkmaz
,
E.
,
Gunalan
,
P. K.
,
Cui
,
X. T.
,
Fedder
,
G. K.
, and
Ozdoganlar
,
O. B.
,
2016
, “
Ultra-Miniature Ultra-Compliant Neural Probes With Dissolvable Delivery Needles: Design, Fabrication and Characterization
,”
Biomed. Microdevices.
,
18
(
6
), p.
97
. 10.1007/s10544-016-0125-4
53.
Ong
,
X. C.
,
Khilwani
,
R.
,
Forssell
,
M.
,
Ozdoganlar
,
O. B.
, and
Fedder
,
G. K.
,
2017
, “
A Transfer Process to Fabricate Ultracompliant Neural Probes in Dissolvable Needles
,”
J. Micromech. Microeng.
,
27
(
3
), p.
035008
. 10.1088/1361-6439/aa5969
54.
Weltman
,
A.
,
Xu
,
H.
,
Scholten
,
K.
,
Berger
,
T. W.
,
Song
,
D.
, and
Meng
,
E.
,
2016
, “
Deep Brain Targeting Strategy for Bare Parylene Neural Probe Arrays
,”
Proceedings of the Hilton Head Workshop 2016: A Solid-State Sensors, Actuators and Microsystems Workshop
,
Hilton Head Island
,
June 5–9
.
55.
Xu
,
H.
,
Hirschberg
,
A. W.
,
Scholten
,
K.
,
Berger
,
T. W.
,
Song
,
D.
, and
Meng
,
E.
,
2018
, “
Acute in Vivo Testing of a Conformal Polymer Microelectrode Array for Multi-Region Hippocampal Recordings
,”
J. Neural Eng.
,
15
(
1
), p.
016017
. 10.1088/1741-2552/aa9451
56.
Patel
,
P. R.
,
Na
,
K.
,
Zhang
,
H.
,
Kozai
,
T. D. Y.
,
Kotov
,
N. A.
,
Yoon
,
E.
, and
Chestek
,
C. A.
,
2015
, “
Insertion of Linear 8.4 µm Diameter 16 Channel Carbon Fiber Electrode Arrays for Single Unit Recordings
,”
J. Neural Eng.
,
12
(
4
), p.
046009
. 10.1088/1741-2560/12/4/046009
57.
Shoffstall
,
A. J.
,
Srinivasan
,
S.
,
Willis
,
M.
,
Stiller
,
A. M.
,
Ecker
,
M.
,
Voit
,
W. E.
,
Pancrazio
,
J. J.
, and
Capadona
,
J. R.
,
2018
, “
A Mosquito Inspired Strategy to Implant Microprobes Into the Brain
,”
Sci Rep.
,
8
(
1
), p.
122
. 10.1038/s41598-017-18522-4
58.
Joo
,
H. R.
,
Fan
,
J. L.
,
Chen
,
S.
,
Pebbles
,
J. A.
,
Liang
,
H.
,
Chung
,
J. E.
,
Yorita
,
A. M.
,
Tooker
,
A. C.
,
Tolosa
,
V. M.
,
Geaghan-Breiner
,
C.
,
Roumis
,
D. K.
,
Liu
,
D. F.
,
Haque
,
R.
, and
Frank
,
L. M.
,
2019
, “
A Microfabricated, 3D-Sharpened Silicon Shuttle for Insertion of Flexible Electrode Arrays Through Dura Mater Into Brain
,”
J. Neural Eng.
,
16
(
6
), p.
066021
. 10.1088/1741-2552/ab2b2e
59.
Felix
,
S.
,
Shah
,
K.
,
George
,
D.
,
Tolosa
,
V.
,
Tooker
,
A.
,
Sheth
,
H.
,
Delima
,
T.
, and
Pannu
,
S.
,
2012
, “
Removable Silicon Insertion Stiffeners for Neural Probes Using Polyethylene Glycol as a Biodissolvable Adhesive
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
San Diego, CA
,
Aug. 28–Sept. 1
, pp.
871
874
.
60.
Jiao
,
X.
,
Wang
,
Y.
, and
Qing
,
Q.
,
2017
, “
Scalable Fabrication Framework of Implantable Ultrathin and Flexible Probes With Biodegradable Sacrificial Layers
,”
Nano Lett.
,
17
(
12
), pp.
7315
7322
. 10.1021/acs.nanolett.7b02851
61.
Yoshida Kozai
,
T. D.
, and
Kipke
,
D. R.
,
2009
, “
Insertion Shuttle With Carboxyl Terminated Self-Assembled Monolayer Coatings for Implanting Flexible Polymer Neural Probes in the Brain
,”
J. Neurosci. Methods.
,
184
(
2
), pp.
199
205
. 10.1016/j.jneumeth.2009.08.002
62.
Kim
,
T.
,
McCall
,
J. G.
,
Jung
,
Y. H.
,
Huang
,
X.
,
Siuda
,
E. R.
,
Li
,
Y.
,
Song
,
J.
,
Song
,
Y. M.
,
Pao
,
H. A.
,
Kim
,
R. H.
,
Lu
,
C.
,
Lee
,
S. D.
,
Song
,
I. S.
,
Shin
,
G.
,
Al-Hasani
,
R.
,
Kim
,
S.
,
Tan
,
M. P.
,
Huang
,
Y.
,
Omenetto
,
F. G.
,
Rogers
,
G. A.
, and
Bruchas
,
M. R.
,
2013
, “
Injectable, Cellular-Scale Optoelectronics With Applications for Wireless Optogenetics
,”
Science
,
340
(
6129
), pp.
211
216
. 10.1126/science.1232437
63.
Zhao
,
Z.
,
Luan
,
L.
,
Wei
,
X.
,
Zhu
,
H.
,
Li
,
X.
,
Lin
,
S.
,
Siegel
,
J. J.
,
Chitwood
,
R. A.
, and
Xie
,
C.
,
2017
, “
Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes
,”
Nano Lett.
,
17
(
8
), pp.
4588
4595
. 10.1021/acs.nanolett.7b00956
64.
Zhao
,
Z.
,
Li
,
X.
,
He
,
F.
,
Wei
,
X.
,
Lin
,
S.
, and
Xie
,
C.
,
2019
, “
Parallel, Minimally-Invasive Implantation of Ultra-Flexible Neural Electrode Arrays
,”
J. Neural Eng.
,
16
(
3
), p.
035001
. 10.1088/1741-2552/ab05b6
65.
Sohal
,
H. S.
,
Jackson
,
A.
,
Jackson
,
R.
,
Clowry
,
G.
,
Vassilevski
,
K.
,
O’Neill
,
A.
, and
Baker
,
S. N.
,
2014
, “
The Sinusoidal Probe: A New Approach to Improve Electrode Longevity
,”
Front. Neuroeng.
,
7
, p.
10
. 10.3389/fneng.2014.00010
66.
Yuk
,
H.
,
Lu
,
B.
,
Lin
,
S.
,
Qu
,
K.
,
Xu
,
J.
,
Luo
,
J.
, and
Zhao
,
X.
,
2020
, “
3D Printing of Conducting Polymers
,”
Nat. Commun.
,
11
(
1
), p.
1604
. 10.1038/s41467-020-15316-7
67.
Kim
,
J. H.
,
Lee
,
G. H.
,
Kim
,
S.
,
Chung
,
H. W.
,
Lee
,
J. H.
,
Lee
,
S. M.
,
Kang
,
C. Y.
, and
Lee
,
S. H.
,
2018
, “
Flexible Deep Brain Neural Probe for Localized Stimulation and Detection With Metal Guide
,”
Biosens. Bioelectron.
,
117
, pp.
436
443
. 10.1016/j.bios.2018.06.035
68.
Kim
,
B. J.
,
Kuo
,
J. T. W.
,
Hare
,
S. A.
,
Lee
,
C. D.
,
Yu
,
L.
,
Gutierrez
,
C. A.
,
Hoang
,
T. Q.
,
Pikov
,
V.
, and
Meng
,
E.
,
2013
, “
3D Parylene Sheath Neural Probe for Chronic Recordings
,”
J. Neural Eng.
,
10
(
4
), p.
045002
. 10.1088/1741-2560/10/4/045002
69.
Zhao
,
Z.
,
Kim
,
E.
,
Luo
,
H.
,
Zhang
,
J.
, and
Xu
,
Y.
,
2018
, “
Flexible Deep Brain Neural Probes Based on a Parylene Tube Structure
,”
J. Micromech. Microeng.
,
28
(
1
), p.
015012
. 10.1088/1361-6439/aa9d61
70.
Luan
,
L.
,
Wei
,
X.
,
Zhao
,
Z.
,
Siegel
,
J. J.
,
Potnis
,
O.
,
Tuppen
,
C. A.
,
Lin
,
S.
,
Kazmi
,
S.
,
Fowler
,
R. A.
,
Holloway
,
S.
,
Dunn
,
A. K.
,
Chitwood
,
R. A.
, and
Xie
,
C.
,
2017
, “
Ultraflexible Nanoelectronic Probes Form Reliable, Glial Scar–Free Neural Integration
,”
Sci. Adv.
,
3
(
2
), p.
e1601966
. 10.1126/sciadv.1601966
71.
Wei
,
X.
,
Luan
,
L.
,
Zhao
,
Z.
,
Li
,
X.
,
Zhu
,
H.
,
Potnis
,
O.
, and
Xie
,
C.
,
2018
, “
Nanofabricated Ultraflexible Electrode Arrays for High-Density Intracortical Recording
,”
Adv. Sci.
,
5
(
6
), p.
1700625
. 10.1002/advs.201700625
72.
Musk
,
E.
,
2019
, “
An Integrated Brain-Machine Interface Platform With Thousands of Channels
,”
J. Med. Internet Res.
,
21
(
10
), p.
e16194
. 10.2196/16194
73.
Zhang
,
S.
,
Wang
,
C.
,
Gao
,
H.
,
Yu
,
C.
,
Yan
,
Q.
,
Lu
,
Y.
,
Tao
,
Z.
,
Linghu
,
C.
,
Chen
,
Z.
,
Xu
,
K.
, and
Song
,
J.
,
2020
, “
A Removable Insertion Shuttle for Ultraflexible Neural Probe Implantation With Stable Chronic Brain Electrophysiological Recording
,”
Adv. Mater. Interfaces
,
7
(
6
), p.
1901775
. 10.1002/admi.201901775
74.
Liu
,
J.
,
Fu
,
T. M.
,
Cheng
,
Z.
,
Hong
,
G.
,
Zhou
,
T.
,
Jin
,
L.
,
Duvvuri
,
M.
,
Jiang
,
Z.
,
Kruskal
,
P.
,
Xie
,
C.
,
Suo
,
Z.
,
Fang
,
Y.
, and
Lieber
,
C. M.
,
2015
, “
Syringe-Injectable Electronics
,”
Nat. Nanotechnol.
,
10
(
7
), pp.
629
636
. 10.1038/nnano.2015.115
75.
Hong
,
G.
,
Fu
,
T. M.
,
Zhou
,
T.
,
Schuhmann
,
T. G.
,
Huang
,
J.
, and
Lieber
,
C. M.
,
2015
, “
Syringe Injectable Electronics: Precise Targeted Delivery With Quantitative Input/Output Connectivity
,”
Nano Lett
,
15
(
10
), pp.
6979
6984
. 10.1021/acs.nanolett.5b02987
76.
Zhou
,
T.
,
Hong
,
G.
,
Fu
,
T. M.
,
Yang
,
X.
,
Schuhmann
,
T. G.
,
Viveros
,
R. D.
, and
Lieber
,
C. M.
,
2017
, “
Syringe-injectable Mesh Electronics Integrate Seamlessly With Minimal Chronic Immune Response in the Brain
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
23
), pp.
5894
5899
. 10.1073/pnas.1705509114
77.
Lecomte
,
A.
,
Degache
,
A.
,
Descamps
,
E.
,
Dahan
,
L.
, and
Bergaud
,
C.
,
2017
, “
In vitro and In vivo Biostability Assessment of Chronically-Implanted Parylene C Neural Sensors
,”
Sens. Actuators, B
,
251
, pp.
1001
1008
. 10.1016/j.snb.2017.05.057
78.
Lecomte
,
A.
,
Castagnola
,
V.
,
Descamps
,
E.
,
Dahan
,
L.
,
Blatche
,
M. C.
,
Dinis
,
T. M.
,
Leclerc
,
E.
,
Egles
,
C.
, and
Bergaud
,
C.
,
2015
, “
Silk and PEG as Means to Stiffen a Parylene Probe for Insertion in the Brain: Toward a Double Time-Scale Tool for Local Drug Delivery
,”
J. Micromech. Microeng.
,
25
(
12
), p.
125003
. 10.1088/0960-1317/25/12/125003
79.
Ware
,
T.
,
Simon
,
D.
,
Arreaga-Salas
,
D. E.
,
Reeder
,
J.
,
Rennaker
,
R.
,
Keefer
,
E. W.
, and
Voit
,
W.
,
2012
, “
Fabrication of Responsive, Softening Neural Interfaces
,”
Adv. Funct. Mater.
,
22
(
16
), pp.
3470
3479
. 10.1002/adfm.201200200
80.
Simon
,
D. M.
,
Charkhkar
,
H.
,
John
,
C. S.
,
Rajendran
,
S.
,
Kang
,
T.
,
Reit
,
R.
,
Arreaga-Salas
,
D.
,
McHail
,
D. G.
,
Knaack
,
G. L.
,
Sloan
,
A.
,
Grasse
,
D.
,
Dumas
,
T. C.
,
Rennaker
,
R. L.
,
Pancrazio
,
J. J.
, and
Voit
,
E.
,
2017
, “
Design and Demonstration of an Intracortical Probe Technology With Tunable Modulus
,”
J. Biomed. Mater. Res., Part A
,
105A
(
1
), pp.
159
168
. 10.1002/jbm.a.35896
81.
Stiller
,
A. M.
,
Usoro
,
J.
,
Frewin
,
C. L.
,
Danda
,
V. R.
,
Ecker
,
M.
,
Joshi-Imre
,
A.
,
Musselman
,
K. C.
,
Voit
,
W.
,
Modi
,
R.
,
Pancrazio
,
J. J.
, and
Black
,
B. J.
,
2018
, “
Chronic Intracortical Recording and Electrochemical Stability of Thiol-ene/Acrylate Shape Memory Polymer Electrode Arrays
,”
Micromachines
,
9
(
10
), p.
500
. 10.3390/mi9100500
82.
Ware
,
T.
,
Simon
,
D.
,
Liu
,
C.
,
Musa
,
T.
,
Vasudevan
,
S.
,
Sloan
,
A.
,
Keefer
,
E. W.
,
Rennaker
R. L.
II
, and
Voit
,
W.
,
2014
, “
Thiol-ene/acrylate Substrates for Softening Intracortical Electrodes
,”
J. Biomed. Mater. Res. Part B.
,
102B
(
1
), pp.
1
11
. 10.1002/jbmb.32946
83.
Arreaga-Salas
,
D. E.
,
Avendano-Bolivar
,
A.
,
Simon
,
D.
,
Reit
,
R.
,
Garcia-Sandoval
,
A.
,
Rennaker
,
R. L.
, and
Voit
,
W.
,
2015
, “
Integration of High-Charge-Injection-Capacity Electrodes Onto Polymer Softening Neural Interfaces
,”
ACS Appl. Mater. Interfaces.
,
7
(
48
), pp.
26614
26623
. 10.1021/acsami.5b08139
84.
Ejserholm
,
F.
,
Vastesson
,
A.
,
Haraldsson
,
T.
,
Wijngaart
,
W.
,
Schouenborg
,
J.
,
Wallman
,
L.
, and
Bengtsson
,
M.
,
2013
, “
A Polymer Neural Probe with Tunable Flexibility
,”
Proceedings of 6th International IEEE/EMBS Conference on Neural Engineering (NER)
,
San Diego, CA
,
Nov. 6–8
, pp.
691
694
.
85.
Reit
,
R.
,
Abitz
,
H.
,
Reddy
,
N.
,
Parker
,
S.
,
Wei
,
A.
,
Aragon
,
N.
,
Ho
,
M.
,
Weittenhiller
,
A.
,
Kang
,
T.
,
Ecker
,
M.
, and
Voit
,
W. E.
,
2016
, “
Thiol–Epoxy/Maleimide Ternary Networks as Softening Substrates for Flexible Electronics
,”
J. Mater. Chem. B.
,
4
(
32
), p.
5367
. 10.1039/C6TB01082B
86.
Hess
,
A. E.
,
Capadona
,
J. R.
,
Shanmuganathan
,
K.
,
Hsu
,
L.
,
Rowan
,
S. J.
,
Weder
,
C.
,
Tyler
,
D. J.
, and
Zorman
,
C. A.
,
2011
, “
Development of a Stimuli-Responsive Polymer Nanocomposite Toward Biologically Optimized, MEMS-Based Neural Probes
,”
J. Micromech. Microeng.
,
21
(
5
), p.
054009
. 10.1088/0960-1317/21/5/054009
87.
Capadona
,
J. R.
,
Tyler
,
D. J.
,
Zorman
,
C. A.
,
Rowan
,
S. J.
, and
Weder
,
C.
,
2012
, “
Mechanically Adaptive Nanocomposites for Neural Interfacing
,”
MRS Bull
,
37
(
6
), pp.
581
589
. 10.1557/mrs.2012.97
88.
Hess-Dunnin
,
A.
, and
Tyler
,
D.
,
2018
, “
A Mechanically-Adaptive Polymer Nanocomposite-Based Intracortical Probe and Package for Chronic Neural Recording
,”
Micromachines.
,
9
(
11
), p.
583
. 10.3390/mi9110583
89.
Sheng
,
H.
,
Wang
,
X.
,
Kong
,
N.
,
Xi
,
W.
,
Yang
,
H.
,
Wu
,
X.
,
Wu
,
K.
,
Li
,
C.
,
Hu
,
J.
,
Tang
,
J.
,
Zhou
,
J.
,
Duan
,
S.
,
Wang
,
H.
, and
Suo
,
Z.
,
2019
, “
Neural Interfaces by Hydrogels
,”
Extreme Mech. Lett.
,
30
, p.
100510
. 10.1016/j.eml.2019.100510
90.
Hassler
,
C.
,
Ehler
,
N.
,
Singh
,
V.
,
Xie
,
Y.
,
Martini
,
N.
,
Kirch
,
R. D.
,
Prucker
,
O.
,
Ruhe
,
J.
,
Hofmann
,
U. G.
, and
Stieglitz
,
T.
,
2015
, “
Fabrication and Implantation of Hydrogel Coated, Flexible Polyimide Electrodes
,”
Proceedings of 7th International IEEE/EMBS Conference on Neural Engineering (NER)
,
Montpellier, France
,
Apr. 22–24
, pp.
561
564
.
91.
Rezaei
,
S.
,
Xu
,
Y.
, and
Pang
,
S. W.
,
2019
, “
Control of Neural Probe Shank Flexibility by Fluidic Pressure in Embedded Microchannel Using PDMS/PI Hybrid Substrate
,”
PLoS One
,
14
(
7
), p.
e0220258
. 10.1371/journal.pone.0220258
92.
Wen
,
X.
,
Wang
,
B.
,
Huang
,
S.
,
Liu
,
T. L.
,
Lee
,
M. S.
,
Chung
,
P. S.
,
Chow
,
Y. T.
,
Huang
,
I. W.
,
Monbouquette
,
H. G.
,
Maidment
,
N. T.
, and
Chiou
,
P. Y.
,
2019
, “
Flexible, Multifunctional Neural Probe With Liquid Metal Enabled, Ultra Large Tunable Stiffness for Deep-Brain Chemical Sensing and Agent Delivery
,”
Biosens. Bioelectron.
,
131
, pp.
37
45
. 10.1016/j.bios.2019.01.060
93.
Dryg
,
I. D.
,
Ward
,
M. P.
,
Qing
,
K. Y.
,
Mei
,
H.
,
Schaffer
,
J. E.
, and
Irazoqui
,
P. P.
,
2015
, “
Magnetically Inserted Neural Electrodes: Tissue Response and Functional Lifetime
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
4
), pp.
562
571
. 10.1109/tnsre.2015.2399856
94.
Gao
,
L.
,
Wang
,
J.
,
Guan
,
S.
,
Du
,
M.
,
Wu
,
K.
,
Xu
,
K.
,
Zou
,
L.
,
Tian
,
H.
, and
Fang
,
Y.
,
2019
, “
Magnetic Actuation of Flexible Microelectrode Arrays for Neural Activity Recordings
,”
Nano Lett
,
19
(
11
), pp.
8032
8039
. 10.1021/acs.nanolett.9b03232
95.
Marshall
,
S. P.
,
Lin
,
W. C.
,
Patel
,
P. R.
,
Shih
,
A. J.
, and
Chestek
,
C. A.
,
2016
, “
Effects of Geometry and Material on the Insertion of Very Small Neural Electrode
,”
Proceedings of 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Orlando, FL
,
Aug. 16–20
, pp.
2784
2788
.
96.
Kim
,
C.
,
Jeong
,
J.
, and
Kim
,
S. J.
,
2019
, “
Recent Progress on Non-conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity
,”
Sensors
,
19
(
5
), p.
1069
. 10.3390/s19051069
97.
Won
,
S. M.
,
Song
,
E.
,
Zhao
,
J.
,
Li
,
J.
,
Rivnay
,
J.
, and
Rogers
,
J. A.
,
2018
, “
Recent Advances in Materials, Devices, and Systems for Neural Interfaces
,”
Adv. Mater.
,
30
(
30
), p.
1800534
. 10.1002/adma.201800534
98.
Lecomte
,
A.
,
Descamps
,
E.
, and
Bergaud
,
C.
,
2018
, “
A Review on Mechanical Considerations for Chronically-Implanted Neural Probes
,”
J. Neural Eng.
,
15
(
3
), p.
031001
. 10.1088/1741-2552/aa8b4f
99.
Shi
,
J.
, and
Fang
,
Y.
,
2019
, “
Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces
,”
Adv. Mater.
,
31
(
45
), p.
1804895
. 10.1002/adma.201804895
100.
Weltman
,
A.
,
Yoo
,
J.
, and
Meng
,
E.
,
2016
, “
Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication
,”
Micromachines
,
7
(
10
), p.
180
. 10.3390/mi7100180
101.
Iseri
,
E.
, and
Kuzum
,
D.
,
2017
, “
Implantable Optoelectronic Probes for In vivo Optogenetics
,”
J. Neural. Eng.
,
14
(
3
), p.
031001
. 10.1088/1741-2552/aa60b3
102.
Sim
,
J. Y.
,
Haney
,
M. P.
,
Park
,
S.
,
McCall
,
J. G.
, and
Jeong
,
J. W.
,
2017
, “
Microfluidic Neural Probes: In vivo Tools for Advancing Neuroscience
,”
Lab Chip
,
17
(
8
), p.
1406
. 10.1039/C7LC00103G
103.
Yook
,
G.
,
Lee
,
S. W.
,
Lee
,
H. C.
,
Cho
,
I. J.
, and
Lee
,
H. J.
,
2016
, “
Neural Probes for Chronic Applications
,”
Micromachines
,
7
(
10
), p.
179
. 10.3390/mi7100179
104.
Scholten
,
K.
, and
Meng
,
E.
,
2015
, “
Materials for Microfabricated Implantable Devices: A Review
,”
Lab Chip
,
15
(
22
), p.
4256
. 10.1039/C5LC00809C
105.
Fekete
,
Z.
, and
Pongracz
,
A.
,
2017
, “
Multifunctional Soft Implants to Monitor and Control Neural Activity in the Central and Peripheral Nervous System: A Review
,”
Sens. Actuators, B
,
243
, pp.
1214
1223
. 10.1016/j.snb.2016.12.096
106.
Wang
,
J. F.
,
Tian
,
H. H.
, and
Fang
,
Y.
,
2019
, “
Implantable and Flexible Electronics for In vivo Brain Activity Recordings
,”
Chin. J. Anal. Chem.
,
47
(
10
), pp.
1549
1558
. 10.1016/S1872-2040(19)61192-8
107.
Ramadi
,
K. B.
, and
Cima
,
M. J.
,
2019
, “
Materials and Devices for Micro-Invasive Neural Interfacing
,”
MRS Adv.
4
(
51–52
), pp.
2805
2816
. 10.1557/adv.2019.424
108.
Ngernsutivorakul
,
T.
,
White
,
T. S.
, and
Kennedy
,
R. T.
,
2018
, “
Microfabricated Probes for Studying Brain Chemistry: A Review
,”
ChemPhysChem
,
19
(
10
), pp.
1
16
. 10.1002/cphc.201701180
109.
Vepari
,
C.
, and
Kaplan
,
D. L.
,
2007
, “
Silk as a Biomaterial
,”
Prog. Polym. Sci.
,
32
(
8–9
), pp.
991
1007
. 10.1016/j.progpolymsci.2007.05.013
110.
Jiang
,
C.
,
Wang
,
X.
,
Gunawidjaja
,
R.
,
Lin
,
Y. H.
,
Gupta
,
M. K.
,
Kaplan
,
D. L.
,
Naik
,
R. R.
, and
Tsukruk
,
V. V.
,
2007
, “
Mechanical Properties of Robust Ultrathin Silk Fibroin Films
,”
Adv. Funct. Mater.
,
17
(
13
), pp.
2229
2237
. 10.1002/adfm.200601136
111.
Lee
,
H. C.
,
Gaire
,
J.
,
Currlin
,
S. W.
,
McDermott
,
M. D.
,
Park
,
K.
, and
Otto
,
K. J.
,
2017
, “
Foreign Body Response to Intracortical Microelectrodes Is Not Altered With Dip-Coating of Polyethylene Glycol (PEG)
,”
Front. Neurosci.
,
11
, p.
513
. 10.3389/fnins.2017.00513
112.
Al-Nasassrah
,
M. A.
,
Podczeck
,
F.
, and
Newton
,
J. M.
,
1998
, “
The Effect of an Increase in Chain Length on the Mechanical Properties of Polyethylene Glycols
,”
Eur. J. Pharm. Biopharm.
,
46
(
1
), pp.
31
38
. 10.1016/S0939-6411(97)00151-3
113.
Gunatillake
,
P. A.
, and
Adhikari
,
R.
,
2003
, “
Biodegradable Synthetic Polymers for Tissue Engineering
,”
Eur. Cells Mater.
,
5
, pp.
1
16
. 10.22203/eCM.v005a01
114.
Foley
,
C. P.
,
Nishimura
,
N.
,
Neeves
,
K. B.
,
Schaffer
,
C. B.
, and
Olbricht
,
W. L.
,
2009
, “
Flexible Microfluidic Devices Supported by Biodegradable Insertion Scaffolds for Convection-Enhanced Neural Drug Delivery
,”
Biomed. Microdevices.
,
11
(
4
), pp.
915
924
. 10.1007/s10544-009-9308-6
115.
Stice
,
P.
,
Gilletti
,
A.
,
Panitch
,
A.
, and
Muthuswamy
,
J.
,
2007
, “
Thin Microelectrodes Reduce GFAP Expression in the Implant Site in Rodent Somatosensory Cortex
,”
J. Neural Eng.
,
4
(
2
), pp.
42
53
. 10.1088/1741-2560/4/2/005
116.
Gorgieva
,
S.
, and
Kokol
,
V.
,
2011
, “
Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives
,”
Biomater. Appl. Nanomed.
, pp.
17
52
. 10.5772/24118
117.
Bourke
,
S. L.
, and
Kohn
,
J.
,
2003
, “
Polymers Derived From the Amino Acid L-Tyrosine: Polycarbonates, Polyarylates and Copolymers With Poly (Ethylene Glycol)
,”
Adv. Drug Deliv. Rev.
,
55
(
4
), pp.
447
466
. 10.1016/S0169-409X(03)00038-3
118.
Tian
,
C.
,
Xiao
,
R.
, and
Guo
,
J.
,
2018
, “
An Experimental Study on Strain Hardening of Amorphous Thermoses: Effect of Temperature, Strain Rate, and Network Density
,”
ASME J. Appl. Mech.
,
85
(
10
), p.
101012
. 10.1115/1.4040692
119.
Zhang
,
S.
,
Wang
,
C.
,
Nie
,
S.
,
Xiao
,
J.
, and
Song
,
J.
,
2019
, “
Wrinkling of Silicon Nanoribbons on Shape Memory Polymers
,”
J. Phys. D: Appl. Phys.
,
52
(
26
), p.
265101
. 10.1088/1361-6463/ab188a
120.
Linghu
,
C.
,
Zhang
,
S.
,
Wang
,
C.
,
Yu
,
K.
,
Li
,
C.
,
Zeng
,
Y.
,
Zhu
,
H.
,
Jin
,
X.
,
You
,
Z.
, and
Song
,
J.
,
2020
, “
Universal SMP Gripper With Massive and Selective Capabilities for Multiscaled, Arbitrarily Shaped Objects
,”
Sci. Adv.
,
6
(
7
), p.
eaay5120
. 10.1126/sciadv.aay5120
121.
Zhang
,
Y.
,
Zheng
,
N.
,
Cao
,
Y.
,
Wang
,
F.
,
Wang
,
P.
,
Ma
,
Y.
,
Lu
,
B.
,
Hou
,
G.
,
Fang
,
Z.
,
Liang
,
Z.
,
Yue
,
M.
,
Li
,
Y.
,
Chen
,
Y.
,
Fu
,
J.
,
Wu
,
J.
,
Xie
,
T.
, and
Feng
,
X.
,
2019
, “
Climbing-Inspired Twining Electrodes Using Shape Memory for Peripheral Nerve Stimulation and Recording
,”
Sci. Adv.
,
5
(
4
), p.
eaaw1066
. 10.1126/sciadv.aaw1066
122.
Yan
,
C.
, and
Li
,
G.
,
2020
, “
A Mechanism-Based Four-Chain Constitutive Model for Enthalpy-Driven Thermoset Shape Memory Polymers With Finite Deformation
,”
ASME J. Appl. Mech.
,
87
(
6
), p.
061007
. 10.1115/1.4046583
123.
Ware
,
T.
,
Simon
,
D.
,
Rennaker
,
R. L.
, II
, and
Voit
,
W.
,
2013
, “
Smart Polymers for Neural Interfaces
,”
Polym. Rev.
,
53
(
1
), pp.
108
129
. 10.1080/15583724.2012.751924
124.
Ding
,
J.
,
Remij
,
E. W.
,
Remmers
,
J. J. C.
, and
Huyghe
,
J. M.
,
2018
, “
Swelling-Driven Crack Propagation in Large Deformation in Ionized Hydrogel
,”
ASME J. Appl. Mech.
,
85
(
10
), p.
101011
. 10.1115/1.4040334
125.
Yan
,
H.
,
Su
,
H.
, and
Zhong
,
Z.
,
2020
, “
Modeling of the Photo-Thermal-Ph Triple-Responsive Hydrogels Considering the Coupled Effect of Photothermal Conversion and Electrochemistry
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071007
. 10.1115/1.4046919
126.
Li
,
Q.
,
Xu
,
Z.
,
Ji
,
S.
,
Lv
,
P.
,
Li
,
X.
,
Hong
,
W.
, and
Duan
,
H.
,
2020
, “
Kinetic-Induced Morphing of Three-Dimensional-Printed Gel Structures Based on Geometric Asymmetry
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071008
. 10.1115/1.4046920
You do not currently have access to this content.