Abstract

Hard-magnetic soft active materials have drawn significant research interest in recent years due to their advantages of untethered, rapid and reversible actuation, and large shape change. These materials are typically fabricated by embedding hard-magnetic particles in a soft matrix. Since the actuation is achieved by transferring the microtorques generated on the magnetic particles by the applied magnetic field to the soft matrix, the actuation depends on the interactions between the magnetic particles and the soft matrix. In this paper, we investigate how such interactions can affect the actuation efficiency by using a micromechanics approach through the representative volume element simulations. The micromechanics reveals that particle rotations play an essential role in determining the actuation efficiency, i.e., the torque transmission efficiency. In particular, a larger local particle rotation in the matrix would reduce the effective actuation efficiency. Micromechanics simulations further show that the efficiency of the torque transmission from the particles to the matrix depends on the particle volume fraction, the matrix modulus, the applied magnetic field strength, as well as the particle shape. Based on the micromechanics simulations, a simple theoretical model is developed to correlate the torque transmission efficiency with the particle volume fraction, the matrix modulus, as well as the applied magnetic field strength. We anticipate this study on the actuation efficiency of hard-magnetic soft active materials would provide optimization and design guidance to the parameter determination for the material fabrication for different applications.

References

1.
Lum
,
G. Z.
,
Ye
,
Z.
,
Dong
,
X.
,
Marvi
,
H.
,
Erin
,
O.
,
Hu
,
W.
, and
Sitti
,
M.
,
2016
, “
Shape-Programmable Magnetic Soft Matter
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
41
), pp.
E6007
E6015
. 10.1073/pnas.1608193113
2.
Wu
,
S.
,
Ze
,
Q.
,
Zhang
,
R.
,
Hu
,
N.
,
Cheng
,
Y.
,
Yang
,
F.
, and
Zhao
,
R.
,
2019
, “
Symmetry-Breaking Actuation Mechanism for Soft Robotics and Active Metamaterials
,”
ACS Appl. Mater. Interfaces
,
11
(
44
), pp.
41649
41658
. 10.1021/acsami.9b13840
3.
Xu
,
T.
,
Zhang
,
J.
,
Salehizadeh
,
M.
,
Onaizah
,
O.
, and
Diller
,
E.
,
2019
, “
Millimeter-Scale Flexible Robots With Programmable Three-Dimensional Magnetization and Motions
,”
Sci. Rob.
,
4
(
29
), p.
eaav4494
. 10.1126/scirobotics.aav4494
4.
Hu
,
W.
,
Lum
,
G. Z.
,
Mastrangeli
,
M.
, and
Sitti
,
M.
,
2018
, “
Small-Scale Soft-Bodied Robot With Multimodal Locomotion
,”
Nature
,
554
(
7690
), pp.
81
85
. 10.1038/nature25443
5.
Ze
,
Q.
,
Kuang
,
X.
,
Wu
,
S.
,
Wong
,
J.
,
Montgomery
,
S. M.
,
Zhang
,
R.
,
Kovitz
,
J. M.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Magnetic Shape Memory Polymers With Integrated Multifunctional Shape Manipulation
,”
Adv. Mater.
,
32
(
4
), p.
1906657
. 10.1002/adma.201906657
6.
Liu
,
S.
,
Zhao
,
Y.
,
Zhao
,
D.
,
Feng
,
L.
,
Shi
,
X.
, and
Chen
,
L.
,
2019
, “
Tunable Band Gap Structures of Acoustic Metamaterials With Magnetorheological Elastomer Cladding Layers
,”
Acta Acust. United Ac.
,
105
(
5
), pp.
796
804
. 10.3813/AAA.919360
7.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
. 10.1038/s41586-018-0185-0
8.
Crivaro
,
A.
,
Sheridan
,
R.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
Von Lockette
,
P.
,
2016
, “
Bistable Compliant Mechanism Using Magneto Active Elastomer Actuation
,”
J. Intell. Mater. Syst. Struct.
,
27
(
15
), pp.
2049
2061
. 10.1177/1045389X15620037
9.
Cui
,
J.
,
Huang
,
T.-Y.
,
Luo
,
Z.
,
Testa
,
P.
,
Gu
,
H.
,
Chen
,
X.-Z.
,
Nelson
,
B. J.
, and
Heyderman
,
L. J.
,
2019
, “
Nanomagnetic Encoding of Shape-Morphing Micromachines
,”
Nature
,
575
(
7781
), pp.
164
168
. 10.1038/s41586-019-1713-2
10.
Gu
,
H.
,
Boehler
,
Q.
,
Ahmed
,
D.
, and
Nelson
,
B. J.
,
2019
, “
Magnetic Quadrupole Assemblies With Arbitrary Shapes and Magnetizations
,”
Sci. Rob.
,
4
(
35
), eaax8977.
11.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Rob.
,
4
(
33
), p.
eaax7329
. 10.1126/scirobotics.aax7329
12.
Hellebrekers
,
T.
,
Kroemer
,
O.
, and
Majidi
,
C.
,
2019
, “
Soft Magnetic Skin for Continuous Deformation Sensing
,”
Adv. Intell. Syst.
,
1
(
4
), p.
1900025
. 10.1002/aisy.201900025
13.
Jeon
,
S.
,
Hoshiar
,
A. K.
,
Kim
,
K.
,
Lee
,
S.
,
Kim
,
E.
,
Lee
,
S.
,
Kim
,
J.-y.
,
Nelson
,
B. J.
,
Cha
,
H.-J.
,
Yi
,
B.-J.
, and
Choi
,
H.
,
2019
, “
A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network
,”
Soft Rob.
,
6
(
1
), pp.
54
68
. 10.1089/soro.2018.0019
14.
Yim
,
S.
, and
Sitti
,
M.
,
2012
, “
Shape-programmable Soft Capsule Robots for Semi-Implantable Drug Delivery
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
1198
1202
. 10.1109/TRO.2012.2197309
15.
Chautems
,
C.
,
Tonazzini
,
A.
,
Floreano
,
D.
, and
Nelson
,
B. J.
, “
A Variable Stiffness Catheter Controlled with an External Magnetic Field
,”
Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
181
186
.
16.
Miyashita
,
S.
,
Guitron
,
S.
,
Yoshida
,
K.
,
Li
,
S.
,
Damian
,
D. D.
, and
Rus
,
D.
, “
Ingestible, Controllable, and Degradable Origami Robot for Patching Stomach Wounds
,”
Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, IEEE, pp.
909
916
.
17.
Bernasconi
,
R.
,
Cuneo
,
F.
,
Carrara
,
E.
,
Chatzipirpiridis
,
G.
,
Hoop
,
M.
,
Chen
,
X.
,
Nelson
,
B. J.
,
Pané
,
S.
,
Credi
,
C.
, and
Levi
,
M.
,
2018
, “
Hard-magnetic Cell Microscaffolds From Electroless Coated 3D Printed Architectures
,”
Mater. Horiz.
,
5
(
4
), pp.
699
707
. 10.1039/C8MH00206A
18.
Erb
,
R. M.
,
Martin
,
J. J.
,
Soheilian
,
R.
,
Pan
,
C.
, and
Barber
,
J. R.
,
2016
, “
Actuating Soft Matter With Magnetic Torque
,”
Adv. Funct. Mater.
,
26
(
22
), pp.
3859
3880
. 10.1002/adfm.201504699
19.
Zhao
,
R.
,
Kim
,
Y.
,
Chester
,
S. A.
,
Sharma
,
P.
, and
Zhao
,
X.
,
2019
, “
Mechanics of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
244
263
. 10.1016/j.jmps.2018.10.008
20.
Kim
,
J.
,
Chung
,
S. E.
,
Choi
,
S.-E.
,
Lee
,
H.
,
Kim
,
J.
, and
Kwon
,
S.
,
2011
, “
Programming Magnetic Anisotropy in Polymeric Microactuators
,”
Nat. Mater.
,
10
(
10
), pp.
747
752
. 10.1038/nmat3090
21.
Wu
,
S.
,
Hamel
,
C. M.
,
Ze
,
Q.
,
Yang
,
F.
,
Qi
,
H. J.
, and
Zhao
,
R.
,
2020
, “
Evolutionary Algorithm Guided Voxel-Encoding Printing of Functional Hard-Magnetic Soft Active Materials
,”
Advanced Intelligent Systems
, p.
2000060
. 10.1002/aisy.202000060
22.
Ginder
,
J.
,
Clark
,
S.
,
Schlotter
,
W.
, and
Nichols
,
M.
,
2002
, “
Magnetostrictive Phenomena in Magnetorheological Elastomers
,”
Int. J. Mod. Phys. B
,
16
(
17n18
), pp.
2412
2418
. 10.1142/S021797920201244X
23.
Kankanala
,
S.
, and
Triantafyllidis
,
N.
,
2004
, “
On Finitely Strained Magnetorheological Elastomers
,”
J. Mech. Phys. Solids
,
52
(
12
), pp.
2869
2908
. 10.1016/j.jmps.2004.04.007
24.
Danas
,
K.
,
Kankanala
,
S.
, and
Triantafyllidis
,
N.
,
2012
, “
Experiments and Modeling of Iron-Particle-Filled Magnetorheological Elastomers
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
120
138
. 10.1016/j.jmps.2011.09.006
25.
Han
,
Y.
,
Mohla
,
A.
,
Huang
,
X.
,
Hong
,
W.
, and
Faidley
,
L. E.
,
2015
, “
Magnetostriction and Field Stiffening of Magneto-Active Elastomers
,”
Int. J. Appl. Mech.
,
7
(
1
), p.
1550001
. 10.1142/S1758825115400013
26.
Lopez-Lopez
,
M.
,
Durán
,
J. D.
,
Iskakova
,
L. Y.
, and
Zubarev
,
A. Y.
,
2016
, “
Mechanics of Magnetopolymer Composites: a Review
,”
J. Nanofluids
,
5
(
4
), pp.
479
495
. 10.1166/jon.2016.1233
27.
Bertotti
,
G.
,
1998
,
Hysteresis in Magnetism: for Physicists, Materials Scientists, and Engineers
,
Academic Press
,
San Diego, CA
.
28.
Kalina
,
K.
,
Brummund
,
J.
,
Metsch
,
P.
,
Kästner
,
M.
,
Borin
,
D. Y.
,
Linke
,
J.
, and
Odenbach
,
S.
,
2017
, “
Modeling of Magnetic Hystereses in Soft MREs Filled With NdFeB Particles
,”
Smart Mater. Struct.
,
26
(
10
), p.
105019
. 10.1088/1361-665X/aa7f81
29.
Mahdavi
,
M.
,
Yousefi
,
E.
,
Baniassadi
,
M.
,
Karimpour
,
M.
, and
Baghani
,
M.
,
2017
, “
Effective Thermal and Mechanical Properties of Short Carbon Fiber/Natural Rubber Composites as a Function of Mechanical Loading
,”
Appl. Therm. Eng.
,
117
, pp.
8
16
. 10.1016/j.applthermaleng.2017.02.004
30.
Wang
,
W.
,
Dai
,
Y.
,
Zhang
,
C.
,
Gao
,
X.
, and
Zhao
,
M.
,
2016
, “
Micromechanical Modeling of Fiber-Reinforced Composites With Statistically Equivalent Random Fiber Distribution
,”
Materials
,
9
(
8
), p.
624
. 10.3390/ma9080624
31.
Riaño
,
L.
, and
Joliff
,
Y.
,
2019
, “
An Abaqus Plug-in for the Geometry Generation of Representative Volume Elements With Randomly Distributed Fibers and Interphases
,”
Compos. Struct.
,
209
, pp.
644
651
. 10.1016/j.compstruct.2018.10.096
32.
Babu
,
K.
,
Mohite
,
P.
, and
Upadhyay
,
C.
,
2018
, “
Development of an RVE and Its Stiffness Predictions Based on Mathematical Homogenization Theory for Short Fibre Composites
,”
Int. J. Solids Struct.
,
130
, pp.
80
104
. 10.1016/j.ijsolstr.2017.10.011
33.
Tian
,
W.
,
Qi
,
L.
,
Zhou
,
J.
,
Liang
,
J.
, and
Ma
,
Y.
,
2015
, “
Representative Volume Element for Composites Reinforced by Spatially Randomly Distributed Discontinuous Fibers and Its Applications
,”
Compos. Struct.
,
131
, pp.
366
373
. 10.1016/j.compstruct.2015.05.014
34.
Wang
,
Z.
,
Wang
,
X.
,
Zhang
,
J.
,
Liang
,
W.
, and
Zhou
,
L.
,
2011
, “
Automatic Generation of Random Distribution of Fibers in Long-Fiber-Reinforced Composites and Mesomechanical Simulation
,”
Mater. Des.
,
32
(
2
), pp.
885
891
. 10.1016/j.matdes.2010.07.002
35.
Yang
,
W.
,
Gao
,
Z.
,
Yue
,
Z.
,
Li
,
X.
, and
Xu
,
B.
,
2019
, “
Hard-Particle Rotation Enabled Soft–Hard Integrated Auxetic Mechanical Metamaterials
,”
Proc. R. Soc. A
,
475
(
2228
), p.
20190234
. 10.1098/rspa.2019.0234
36.
Zhang
,
H.
,
Yang
,
W.
, and
Xu
,
B.
,
2019
, “
Rotation Mechanics of Optical Scatters in Stretchable Metasurfaces
,”
Int. J. Solids Struct.
,
191–192
, pp.
566
576
.
37.
Aryanto
,
D.
,
Ray
,
Z.
,
Sudiro
,
T.
,
Wismogroho
,
A. S.
, and
Sudrajat
,
N.
,
2015
, “
The Effect of Powder Particle Size on the Structural and Magnetic Properties of Bonded NdFeB Magnet
,”
Adv. Mater. Res
,
1123
, pp.
88
91
.
38.
Huang
,
Y.
,
Liu
,
Z.
,
Zhong
,
X.
,
Yu
,
H.
, and
Zeng
,
D.
,
2012
, “
NdFeB Based Magnets Prepared From Nanocrystalline Powders With Various Compositions and Particle Sizes by Spark Plasma Sintering
,”
Powder Metall.
,
55
(
2
), pp.
124
129
. 10.1179/1743290111Y.0000000026
39.
Wang
,
Y.
,
Hu
,
Y.
,
Chen
,
L.
,
Gong
,
X.
,
Jiang
,
W.
,
Zhang
,
P.
, and
Chen
,
Z.
,
2006
, “
Effects of Rubber/Magnetic Particle Interactions on the Performance of Magnetorheological Elastomers
,”
Polym. Test.
,
25
(
2
), pp.
262
267
. 10.1016/j.polymertesting.2005.10.002
40.
Wells
,
J.
,
Löwa
,
N.
,
Paysen
,
H.
,
Steinhoff
,
U.
, and
Wiekhorst
,
F.
,
2019
, “
Probing Particle-Matrix Interactions During Magnetic Particle Spectroscopy
,”
J. Magn. Magn. Mater.
,
475
, pp.
421
428
. 10.1016/j.jmmm.2018.11.109
41.
Osman
,
M. A.
, and
Atallah
,
A.
,
2005
, “
Interparticle and Particle–Matrix Interactions in Polyethylene Reinforcement and Viscoelasticity
,”
Polymer
,
46
(
22
), pp.
9476
9488
. 10.1016/j.polymer.2005.07.030
42.
Yang
,
W.
,
Liu
,
Q.
,
Yue
,
Z.
,
Li
,
X.
, and
Xu
,
B.
,
2017
, “
Rotation of Hard Particles in a Soft Matrix
,”
J. Mech. Phys. Solids
,
101
, pp.
285
310
. 10.1016/j.jmps.2017.01.008
You do not currently have access to this content.