Abstract

With the advent of advanced testing techniques such as laser-induced particle impact test, it is possible to study materials mechanics under extremely high deformation rates, i.e., above 106 s−1, a relatively less explored regime of strain rates. Inspired by the classical Taylor impact test, in this study, we accelerate microparticles of commercially pure titanium to a range of impact velocities, from 144 to 428 m/s, toward a rigid substrate and record their deformation upon impact in real-time. We also conduct finite element modeling of the experimentally recorded impacts using two constitutive equations, namely, Johnson–Cook and Zerilli–Armstrong. We show that the titanium microparticles experience strain rates in the range of 106–1010 s−1 upon impact. We evaluate the capability of the Johnson–Cook and Zerilli–Armstrong equations in predicting the deformation response of pure Ti at ultra-high strain rates. With an optimization-based constitutive modeling approach, we also propose updated strain rate-related parameters for both equations and improve the extent to which the two models can describe the deformation of pure titanium at ultra-high strain rates.

References

1.
Field
,
J. E.
,
Walley
,
S. M.
,
Proud
,
W. G.
,
Goldrein
,
H. T.
, and
Siviour
,
C. R.
,
2004
, “
Review of Experimental Techniques for High Rate Deformation and Shock Studies
,”
Int. J. Impact Eng.
,
30
(
7
), pp.
725
775
.
2.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1997
, “
Adaptive Lagrangian Modelling of Ballistic Penetration of Metallic Targets
,”
Comput. Methods Appl. Mech. Eng.
,
142
(
3–4
), pp.
269
301
. 10.1016/S0045-7825(96)01134-6
3.
Schmidt
,
T.
,
Gärtner
,
F.
,
Assadi
,
H.
, and
Kreye
,
H.
,
2006
, “
Development of a Generalized Parameter Window for Cold Spray Deposition
,”
Acta Mater.
,
54
(
3
), pp.
729
742
. 10.1016/j.actamat.2005.10.005
4.
Mellal
,
M. A.
, and
Williams
,
E. J.
,
2016
, “
Parameter Optimization of Advanced Machining Processes Using Cuckoo Optimization Algorithm and Hoopoe Heuristic
,”
J. Intell. Manuf.
,
27
(
5
), pp.
927
942
. 10.1007/s10845-014-0925-4
5.
Miao
,
H. Y.
,
Larose
,
S.
,
Perron
,
C.
, and
Lévesque
,
M.
,
2009
, “
On the Potential Applications of a 3D Random Finite Element Model for the Simulation of Shot Peening
,”
Adv. Eng. Softw.
,
40
(
10
), pp.
1023
1038
. 10.1016/j.advengsoft.2009.03.013
6.
Lim
,
C. T.
,
Shim
,
V. P. W.
, and
Ng
,
Y. H.
,
2003
, “
Finite-Element Modeling of the Ballistic Impact of Fabric Armor
,”
Int. J. Impact Eng.
,
28
(
1
), pp.
13
31
. 10.1016/S0734-743X(02)00031-3
7.
Driscoll
,
D. E.
,
1970
,
Impact Testing of Metals
,
ASTM International
,
West Conshohocken, PA
.
8.
Taylor
,
G.
,
1948
, “
The Use of Flat-Ended Projectiles for Determining Dynamic Yield Stress I. Theoretical Considerations
,”
Proc. R. Soc. London Ser. A Math. Phys. Sci.
,
194
(
1038
), pp.
289
299
. 10.1098/rspa.1948.0081
9.
Hopkinson
,
B.
,
1914
, “
A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
213
(
497–508
), pp.
437
456
.
10.
Gray
,
G. T.
III
,
2000
, “Shock Wave Testing of Ductile Materials,”
ASM Handbook: Mechanical Testing and Evaluation
, Vol.
8
,
H.
Kuhn
, and
D.
Medlin
, eds.,
ASM International
,
Materials Park, OH
, pp.
530
538
.
11.
Murugesan
,
M.
, and
Jung
,
D. W.
,
2019
, “
Johnson–Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications
,”
Materials (Basel)
,
12
(
4
), p.
609
. 10.3390/ma12040609
12.
Sheikh-Ahmad
,
J. Y.
, and
Bailey
,
J. A.
,
1995
, “
A Constitutive Model for Commercially Pure Titanium
,”
ASME J. Eng. Mater. Technol.
,
117
(
2
), pp.
139
144
. 10.1115/1.2804520
13.
Simon
,
P.
,
Demarty
,
Y.
,
Rusinek
,
A.
, and
Voyiadjis
,
G. Z.
,
2018
, “
Material Behavior Description for a Large Range of Strain Rates From Low to High Temperatures: Application to High Strength Steel
,”
Metals (Basel)
,
8
(
10
), p.
795
. 10.3390/met8100795
14.
Chichili
,
D. R.
,
Ramesh
,
K. T.
, and
Hemker
,
K. J.
,
1998
, “
The High-Strain-Rate Response of Alpha-Titanium: Experiments, Deformation Mechanisms and Modeling
,”
Acta Mater.
,
46
(
3
), pp.
1025
1043
.
15.
Mishra
,
A.
,
Martin
,
M.
,
Thadhani
,
N. N.
,
Kad
,
B. K.
,
Kenik
,
E. A.
, and
Meyers
,
M. A.
,
2008
, “
High-Strain-Rate Response of Ultra-Fine-Grained Copper
,”
Acta Mater.
,
56
(
12
), pp.
2770
2783
.
16.
Gangireddy
,
S.
,
2018
, “
A Modified Johnson–Cook Model for Cp–Ti to Incorporate the Effects of Dynamic Strain Aging and Phase Transformation
,”
Int. J. Metall. Met. Phys.
,
3
(
2
), pp.
1
11
. 10.35840/2631-5076/9216
17.
Meyer
,
H. W.
,
2006
,
A Modified Zerilli-Armstrong Constitutive Model Describing the Strength and Localizing Behavior of Ti-6Al-4V
.
18.
Hernandez
,
C.
,
Maranon
,
A.
,
Ashcroft
,
I. A.
, and
Casas-Rodriguez
,
J. P.
,
2013
, “
A Computational Determination of the Cowper–Symonds Parameters From a Single Taylor Test
,”
Appl. Math. Model.
,
37
(
7
), pp.
4698
4708
. 10.1016/j.apm.2012.10.010
19.
Dean
,
J.
, and
Clyne
,
T. W.
,
2017
, “
Extraction of Plasticity Parameters From a Single Test Using a Spherical Indenter and FEM Modelling
,”
Mech. Mater.
,
105
, pp.
112
122
. 10.1016/j.mechmat.2016.11.014
20.
Burley
,
M.
,
Campbell
,
J. E.
,
Dean
,
J.
, and
Clyne
,
T. W.
,
2018
, “
Johnson–Cook Parameter Evaluation From Ballistic Impact Data via Iterative FEM Modelling
,”
Int. J. Impact Eng.
,
112
, pp.
180
192
. 10.1016/j.ijimpeng.2017.10.012
21.
Andrews
,
E. W.
,
Giannakopoulos
,
A. E.
,
Plisson
,
E.
, and
Suresh
,
S.
,
2001
, “
Analysis of the Impact of a Sharp Indenter
,”
Int. J. Solids Struct.
,
39
(
2
), pp.
281
295
. 10.1016/S0020-7683(01)00215-3
22.
Lu
,
J.
,
Suresh
,
S.
, and
Ravichandran
,
G.
,
2003
, “
Dynamic Indentation for Determining the Strain Rate Sensitivity of Metals
,”
J. Mech. Phys. Solids
,
51
(
11–12
), pp.
1923
1938
. 10.1016/j.jmps.2003.09.007
23.
Trelewicz
,
J. R.
, and
Schuh
,
C. A.
,
2008
, “
The Hall-Petch Breakdown at High Strain Rates: Optimizing Nanocrystalline Grain Size for Impact Applications
,”
Appl. Phys. Lett.
,
93
(
17
), pp.
10
13
. 10.1063/1.3000655
24.
Xue
,
Q.
,
Meyers
,
M. A.
, and
Nesterenko
,
V. F.
,
2002
, “
Self-Organization of Shear Bands in Titanium and Ti-6Al-4V Alloy
,”
Acta Mater.
,
50
(
3
), pp.
575
596
. 10.1016/S1359-6454(01)00356-1
25.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2018
, “
In-Situ Observations of Single Micro-Particle Impact Bonding
,”
Scr. Mater.
,
145
, pp.
9
13
. 10.1016/j.scriptamat.2017.09.042
26.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Champagne
,
V. K.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2018
, “
Adiabatic Shear Instability Is Not Necessary for Adhesion in Cold Spray
,”
Acta Mater.
,
158
, pp.
430
439
. 10.1016/j.actamat.2018.07.065
27.
Assadi
,
H.
,
Kreye
,
H.
,
Gärtner
,
F.
, and
Klassen
,
T.
,
2016
, “
Cold Spraying—A Materials Perspective
,”
Acta Mater.
,
116
, pp.
382
407
. 10.1016/j.actamat.2016.06.034
28.
Moridi
,
A.
,
Hassani-Gangaraj
,
S. M.
,
Guagliano
,
M.
, and
Dao
,
M.
,
2014
, “
Cold Spray Coating: Review of Material Systems and Future Perspectives
,”
Surf. Eng.
,
30
(
6
), pp.
369
395
. 10.1179/1743294414Y.0000000270
29.
Xie
,
W.
,
Alizadeh-Dehkharghani
,
A.
,
Chen
,
Q.
,
Champagne
,
V. K.
,
Wang
,
X.
,
Nardi
,
A. T.
,
Kooi
,
S.
,
Müftü
,
S.
, and
Lee
,
J. H.
,
2017
, “
Dynamics and Extreme Plasticity of Metallic Microparticles in Supersonic Collisions
,”
Sci. Rep.
,
7
(
1
), pp.
1
9
. 10.1038/s41598-017-05104-7
30.
Veysset
,
D.
,
Hsieh
,
A. J.
,
Kooi
,
S.
,
Maznev
,
A. A.
,
Masser
,
K. A.
, and
Nelson
,
K. A.
,
2016
, “
Dynamics of Supersonic Microparticle Impact on Elastomers Revealed by Real-Time Multi-Frame Imaging
,”
Sci. Rep.
,
6
, pp.
1
7
. 10.1038/srep25577
31.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2017
, “
Melting Can Hinder Impact-Induced Adhesion
,”
Phys. Rev. Lett.
,
119
(
17
), p.
175701
. 10.1103/PhysRevLett.119.175701
32.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2016
, “
Supersonic Impact of Metallic Micro-Particles
,” .
33.
Veysset
,
D.
,
Hsieh
,
A. J.
,
Kooi
,
S. E.
, and
Nelson
,
K. A.
,
2017
, “
Molecular Influence in High-Strain-Rate Microparticle Impact Response of Poly(Urethane Urea) Elastomers
,”
Polymer (Guildf)
,
123
, pp.
30
38
. 10.1016/j.polymer.2017.06.071
34.
Xie
,
W.
,
Alizadeh-Dehkharghani
,
A.
,
Chen
,
Q.
,
Champagne
,
V. K.
,
Wang
,
X.
,
Nardi
,
A. T.
,
Kooi
,
S.
,
Müftü
,
S.
, and
Lee
,
J. H.
,
2017
, “
Dynamics and Extreme Plasticity of Metallic Microparticles in Supersonic Collisions
,”
Sci. Rep.
,
7
(
1
), pp.
1
9
. 10.1038/s41598-017-05104-7
35.
Lee
,
J. H.
,
Veysset
,
D.
,
Singer
,
J. P.
,
Retsch
,
M.
,
Saini
,
G.
,
Pezeril
,
T.
,
Nelson
,
K. A.
, and
Thomas
,
E. L.
,
2012
, “
High Strain Rate Deformation of Layered Nanocomposites
,”
Nat. Commun.
,
3
, pp.
1
9
. 10.1038/ncomms2166
36.
Thevamaran
,
R.
,
Lawal
,
O.
,
Yazdi
,
S.
,
Jeon
,
S. J.
,
Lee
,
J. H.
, and
Thomas
,
E. L.
,
2016
, “
Dynamic Creation and Evolution of Gradient Nanostructure in Single-Crystal Metallic Microcubes
,”
Science
,
354
(
6310
), pp.
312
316
. 10.1126/science.aag1768
37.
Xue
,
S.
,
Fan
,
Z.
,
Lawal
,
O. B.
,
Thevamaran
,
R.
,
Li
,
Q.
,
Liu
,
Y.
,
Yu
,
K. Y.
,
Wang
,
J.
,
Thomas
,
E. L.
,
Wang
,
H.
, and
Zhang
,
X.
,
2017
, “
High-Velocity Projectile Impact Induced 9R Phase in Ultrafine-Grained Aluminium
,”
Nat. Commun.
,
8
(
1
), pp.
1
9
. 10.1038/s41467-017-01729-4
38.
Dassault Systèmes
,
2014
, “
Abaqus User Subroutines Reference Guide 6.14 Online Documentation
” [Online]. http://130.149.89.49:2080/v6.14/books/sub/default.htm?startat=ch01s02asb21.html
39.
Yıldırım
,
B.
, and
Müftü
,
S.
,
2012
, “
Simulation and Analysis of the Impact of Micron-Scale Particles Onto a Rough Surface
,”
Int. J. Solids Struct.
,
49
(
11–12
), pp.
1375
1386
. 10.1016/j.ijsolstr.2012.02.018
40.
Rahmati
,
S.
, and
Ghaei
,
A.
,
2014
, “
The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process
,”
J. Therm. Spray Technol.
,
23
(
3
), pp.
530
540
. 10.1007/s11666-013-0051-4
41.
Assadi
,
H.
,
Gärtner
,
F.
,
Stoltenhoff
,
T.
, and
Kreye
,
H.
,
2003
, “
Bonding Mechanism in Cold Gas Spraying
,”
Acta Mater.
,
51
(
15
), pp.
4379
4394
. 10.1016/S1359-6454(03)00274-X
42.
Rahmati
,
S.
, and
Jodoin
,
B.
,
2020
, “
Physically Based Finite Element Modeling Method to Predict Metallic Bonding in Cold Spray
,”
J. Therm. Spray Technol.
,
29
(
4
), pp.
611
629
. 10.1007/s11666-020-01000-1
43.
Imbriglio
,
S. I.
,
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Aghasibeig
,
M.
,
Gauvin
,
R.
,
Nelson
,
K. A.
,
Schuh
,
C. A.
, and
Chromik
,
R. R.
,
2019
, “
Adhesion Strength of Titanium Particles to Alumina Substrates: A Combined Cold Spray and LIPIT Study
,”
Surf. Coatings Technol.
,
361
, pp.
403
412
. 10.1016/j.surfcoat.2019.01.071
44.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
. 10.1016/0013-7944(85)90052-9
45.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
. 10.1063/1.338024
46.
Meyers
,
M.
,
1994
,
“Dynamic Behavior of Materials,”
John Wiley & Sons, Inc
,
Hoboken, NJ
.
47.
Vöhringer
,
O.
,
1989
, “
Deformation Behavior of Metallic Materials
,”
International Summer School on Dynamic Behavior of Materials
,
Nantes, France
,
Sept. 11–15
.
48.
Holmquist
,
T. J.
, and
Johnson
,
G. R.
,
1991
, “
Determination of Constants and Comparison of Results for Various Constitutive Models
,”
J. Phys. IV
,
1
(
C3
), pp.
C3-853
C3-860
. 10.1051/jp4:19913119
49.
Holt
,
W. H.
,
Mock
,
W.
,
Zerilli
,
F. J.
, and
Clark
,
J. B.
,
1994
, “
Experimental and Computational Study of the Impact Deformation of Titanium Taylor Cylinder Specimens
,”
Mech. Mater.
,
17
(
2–3
), pp.
195
201
. 10.1016/0167-6636(94)90059-0
50.
Dey
,
S.
,
Børvik
,
T.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
,
2007
, “
On the Influence of Constitutive Relation in Projectile Impact of Steel Plates
,”
Int. J. Impact Eng.
,
34
(
3
), pp.
464
486
. 10.1016/j.ijimpeng.2005.10.003
51.
Meyer
,
H. W.
, and
Kleponis
,
D. S.
,
2001
, “
Modeling the High Strain Rate Behavior of Titanium Undergoing Ballistic Impact and Penetration
,”
Int. J. Impact Eng.
,
26
(
1–10
), pp.
509
521
. 10.1016/S0734-743X(01)00107-5
52.
Bhamare
,
S.
,
Ramakrishnan
,
G.
,
Mannava
,
S. R.
,
Langer
,
K.
,
Vasudevan
,
V. K.
, and
Qian
,
D.
,
2013
, “
Simulation-Based Optimization of Laser Shock Peening Process for Improved Bending Fatigue Life of Ti-6Al-2Sn-4Zr-2Mo Alloy
,”
Surf. Coatings Technol.
,
232
, pp.
464
474
. 10.1016/j.surfcoat.2013.06.003
53.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1995
, “
Shock Compression of Condensed Matter
,”
AIP Conference Proceedings (No. 370)
,
Seattle, WA
,
Aug. 13–18
, pp.
31
35
.
54.
Bae
,
G.
,
Xiong
,
Y.
,
Kumar
,
S.
,
Kang
,
K.
, and
Lee
,
C.
,
2008
, “
General Aspects of Interface Bonding in Kinetic Sprayed Coatings
,”
Acta Mater.
,
56
(
17
), pp.
4858
4868
. 10.1016/j.actamat.2008.06.003
55.
Cordero
,
Z. C.
,
Knight
,
B. E.
, and
Schuh
,
C. A.
,
2016
, “
Six Decades of the Hall–Petch Effect—A Survey of Grain-Size Strengthening Studies on Pure Metals
,”
Int. Mater. Rev.
,
61
(
8
), pp.
495
512
. 10.1080/09506608.2016.1191808
56.
Wu
,
X.
,
Jiang
,
P.
,
Chen
,
L.
,
Yuan
,
F.
, and
Zhu
,
Y. T.
,
2014
, “
Extraordinary Strain Hardening by Gradient Structure
,”
Proc. Natl. Acad. Sci. USA.
,
111
(
20
), pp.
7197
7201
. 10.1073/pnas.1324069111
57.
Ermolaev
,
B. I.
,
1974
, “
Thermal Conductivity and Electrical Conductivity of Materials Based on Titanium and Its Alloys at Temperatures From 20–80 to 1000 K
,”
Met. Sci. Heat Treat.
,
16
(
12
), pp.
1049
1051
. 10.1007/BF00664049
58.
Thevamaran
,
R.
,
Griesbach
,
C.
,
Yazdi
,
S.
,
Ponga
,
M.
,
Alimadadi
,
H.
,
Lawal
,
O.
,
Jeon
,
S. J.
, and
Thomas
,
E. L.
,
2020
, “
Dynamic Martensitic Phase Transformation in Single-Crystal Silver Microcubes
,”
Acta Mater.
,
182
, pp.
131
143
. 10.1016/j.actamat.2019.10.006
59.
Wu
,
C.
,
Li
,
L.
, and
Thornton
,
C.
,
2003
, “
Rebound Behaviour of Spheres for Plastic Impacts
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
929
946
. 10.1016/S0734-743X(03)00014-9
60.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
, pp.
340
373
.
You do not currently have access to this content.