Abstract

Quasibrittle materials are featured by a strain-softening constitutive behavior under many loading scenarios, which could eventually lead to localization instability. It has long been known that strain localization would result in spurious mesh sensitivity in finite element (FE) simulations. Previous studies have shown that, for the case of fully localized damage, the mesh sensitivity can be mitigated through energy regularization of the material constitutive law. However, depending on the loading configuration and structural geometry, quasibrittle structures could exhibit a complex damage process, which involves both localized and diffused damage patterns at different stages of loading. This study presents a generalized energy regularization method that considers the spatial and temporal evolution of damage pattern. The method introduces a localization parameter, which describes the local damage pattern. The localization parameter governs the energy regularization of the constitutive model, which captures the transition from diffused to localized damage during the failure process. The method is cast into an isotropic damage model, and is further extended to rate-dependent behavior. The energy regularization scheme is directly incorporated into the kinetics of damage growth. The model is applied to simulate static and dynamic failures of ceramic specimens. It is shown that the present model is able to effectively mitigate the spurious mesh sensitivity in FE simulations of both types of failure. The present analysis demonstrates the essential role of mechanism-based energy regularization of constitutive relation in FE simulations of quasibrittle fracture.

References

1.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
,
1976
, “
A Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
371
394
. 10.1016/0022-5096(75)90001-0
2.
Rizzi
,
E.
,
Carol
,
I.
, and
Willam
,
K.
,
1995
, “
Localization Analysis of Elastic Degradation with Application to Scalar Damage
,”
ASCE J. Eng. Mech.
,
121
(
4
), pp.
541
554
. 10.1061/(ASCE)0733-9399(1995)121:4(541)
3.
Jirásek
,
M.
,
2007
, “
Mathematical Analysis of Strain Localization
,”
Revue Européenne de Génie Civil
,
11
(
7–8
), pp.
977
991
. 10.3166/regc.11.977-991
4.
Bažant
,
Z. P.
,
1976
, “
Instability, Ductility, and Size Effect in Strain-Softening Concrete
,”
ASCE J. Eng. Mech. Div.
,
102
(
2
), pp.
331
344
.
5.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
1979
, “
Blunt Crack Band Propagation in Finite Element Analysis
,”
ASCE J. Eng. Mech. Div.
,
105
(
EM2
), pp.
297
315
.
6.
Pietruszczak
,
S.
, and
Mróz
,
Z.
,
1981
, “
Finite Element Analysis of Deformation of Strain-Softening Materials
,”
Int. J. Numer. Methods Eng.
,
17
(
3
), pp.
327
334
. 10.1002/nme.1620170303
7.
Bažant
,
Z. P.
, and
Oh
,
B.-H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Mater. Struct.
,
16
, pp.
155
177
.
8.
Bažant
,
Z. P.
, and
Pijaudier-Cabot
,
G.
,
1988
, “
Nonlocal Continuum Damage, Localization Instability and Convergence
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
287
293
. 10.1115/1.3173674
9.
Peerlings
,
R. H. J.
,
de Borst
,
R.
,
Brekelmans
,
W. A. M.
, and
de Vree
,
J. H. P.
,
1996
, “
Gradient-Enhanced Damage for Quasi-Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
39
(
19
), pp.
3391
3403
. 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
10.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton and London
.
11.
Peerlings
,
R. H. J.
,
Geers
,
M. G. D.
,
de Borst
,
R.
, and
Brekelmans
,
W. A. M.
,
2001
, “
A Critical Comparison of Nonlocal and Gradient-Enhanced Softening Continua
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
7723
7746
. 10.1016/S0020-7683(01)00087-7
12.
Bažant
,
Z. P.
, and
Jirásek
,
M.
,
2002
, “
Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress
,”
ASCE J. Eng. Mech.
,
128
(
11
), pp.
1119
1149
. 10.1061/(ASCE)0733-9399(2002)128:11(1119)
13.
Bažant
,
Z. P.
, and
Ožbolt
,
J.
,
1990
, “
Nonlocal Microplane Model for Fracture, Damage, and Size Effect in Structures
,”
ASCE J. Eng. Mech.
,
116
(
11
), pp.
2485
2505
. 10.1061/(ASCE)0733-9399(1990)116:11(2485)
14.
Bažant
,
Z. P.
, and
Le
,
J.-L.
,
2017
,
Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect
,
Cambridge University Press
,
Cambridge, UK.
15.
Krayani
,
A.
,
Pijaudier-Cabot
,
G.
, and
Dufour
,
F.
,
2009
, “
Boundary Effect on Weight Function in Nonlocal Damage Model
,”
Eng. Fract. Mech.
,
76
(
14
), pp.
2217
2231
. 10.1016/j.engfracmech.2009.07.007
16.
Bažant
,
Z. P.
,
Le
,
J.-L.
, and
Hoover
,
C. G.
,
2010
, “
Nonlocal Boundary Layer Model: Overcoming Boundary Condition Problems in Strength Statistics and Fracture Analysis of Quasibrittle Materials
,”
The 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-7)
,
Jeju, Korea
,
May 23–28
, pp.
135
143
.
17.
Červenka
,
J.
,
Bažant
,
Z. P.
, and
Wierer
,
M.
,
2005
, “
Equivalent Localization Element for Crack Band Approach to Mesh-Sensitivity in Microplane Model
,”
Int. J. Numer. Methods Eng.
,
62
(
5
), pp.
700
726
. 10.1002/nme.1216
18.
Jirásek
,
M.
, and
Bauer
,
M.
,
2012
, “
Numerical Aspects of the Crack Band Approach
,”
Comput. Struct.
,
110-111
, pp.
60
78
. 10.1016/j.compstruc.2012.06.006
19.
John
,
R.
, and
Shah
,
S. P.
,
1986
, “
Fracture of Concrete Subjected to Impact Loading
,”
Cem. Concr. Agg.
,
8
(
1
), pp.
24
32
. 10.1520/CCA10050J
20.
Bažant
,
Z. P.
, and
Gettu
,
R.
,
1992
, “
Rate Effect and Load Relaxation: Static Fracture of Concrete
,”
ACI Mater. J.
,
89
(
5
), pp.
456
468
.
21.
Daphalapurkar
,
N. P.
,
Ramesh
,
K. T.
,
Graham-Brady
,
L. L.
, and
Molinari
,
J. F.
,
2011
, “
Predicting Variability in the Dynamic Failure Strength of Brittle Materials Considering Preexisting Flaws
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
297
319
. 10.1016/j.jmps.2010.10.006
22.
Le
,
J.-L.
,
Eliáš
,
J.
,
Gorgogianni
,
A.
,
Vievering
,
J.
, and
Květoň
,
J.
,
2018
, “
Rate-Dependent Scaling of Dynamic Tensile Strength of Quasibrittle Structures
,”
ASME J. Appl. Mech.
,
85
(
2
), p.
021003
. 10.1115/1.4038496
23.
Luo
,
W.
,
Chau
,
V. T.
, and
Bažant
,
Z. P.
,
2019
, “
Effect of High-Rate Dynamic Comminution on Penetration of Projectiles of Various Velocities and Impact Angles Into Concrete
,”
Int. J. Fract.
,
216
(
2
, pp.
211
221
. 10.1007/s10704-019-00354-0
24.
Rabotnov
,
Y. N.
,
1968
, “Creep Rupture,”
Applied Mechanics
,
Hetényi
,
M.
, and
Vincenti
,
W. G.
, eds.,
International Union of Theoretical and Applied Mechanics, Springer
,
Berlin, Heidelberg
, pp.
342
349
.
25.
Lemaire
,
M.
, and
Chaboche
,
J. L.
,
1978
, “
Aspect Phenomenologique De La Rupture Par Endommagement
,”
J. Mech. Appl.
,
2
, pp.
317
365
.
26.
Kachanov
,
L.
,
1986
,
Introduction to Continuum Damage Mechanics
,
Springer
,
Netherlands
.
27.
Le
,
J.-L.
, and
Eliáš
,
J.
,
2016
, “
A Probabilistic Crack Band Model for Quasibrittle Fracture
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051005
. 10.1115/1.4032692
28.
Berthier
,
E.
,
Démery
,
V.
, and
Ponson
,
L.
,
2017
, “
Damage Spreading in Quasi-Brittle Disordered Solids: I. Localization and Failure
,”
J. Mech. Phys. Solids
,
102
, pp.
101
124
. 10.1016/j.jmps.2016.08.013
29.
Mazars
,
J.
,
1984
, “
Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure
,” Ph.D. thesis,
University of Paris VI
,
Paris, France
.
30.
Bažant
,
Z. P.
,
2005
,
Scaling of Structural Strength
,
Elsevier
,
London
.
31.
Lorentz
,
E.
, and
Godard
,
V.
,
2011
, “
Gradient Damage Models: Towards Full-Scale Computations
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
21–22
), pp.
1927
1944
. 10.1016/j.cma.2010.06.025
32.
Wu
,
J.-Y.
,
2017
, “
A Unified Phase-Field Theory for the Mechanics of Damage and Quasi-Brittle Failure
,”
J. Mech. Phys. Solids
,
103
, pp.
72
99
. 10.1016/j.jmps.2017.03.015
33.
Keita
,
O.
,
Dascalu
,
C.
, and
François
,
B.
,
2014
, “
A Two-Scale Model for Dynamic Damage Evolution
,”
J. Mech. Phys. Solids
,
64
, pp.
170
183
. 10.1016/j.jmps.2013.11.003
34.
Rosakis
,
A. J.
, “
Explosion at the Parthenon: Can We Pick Up the Pieces?
,”
Technical Report, GALCIT SM Report 99-3
,
California Institute of Technology
,
1999
.
35.
Schuler
,
H.
,
Mayrhofer
,
C.
, and
Thoma
,
K.
,
2006
, “
Spall Experiments for the Measurement of the Tensile Strength and Fracture Energy of Concrete At High Strain Rates
,”
Int. J. Impact Eng.
,
32
(
10
), pp.
1635
1650
. 10.1016/j.ijimpeng.2005.01.010
36.
Bhat
,
H. S.
,
Rosakis
,
A. J.
, and
Sammis
,
C. G.
,
2012
, “
A Micromechanics Based Constitutive Model for Brittle Failure At High Strain Rates
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031016
. 10.1115/1.4005897
37.
Bažant
,
Z. P.
, and
Caner
,
F. C.
,
2013
, “
Comminution of Solids Caused by Kinetic Energy of High Shear Strain, with Implications for Impact, Shock and Shale Fracturing
,”
Proc. Nat’l Acad. Sci. USA
,
110
(
48
), pp.
19291
19294
. 10.1073/pnas.1318739110
38.
Bažant
,
Z. P.
, and
Caner
,
F. C.
,
2014
, “
Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: I. Continuum Theory and Turbulence Analogy
,”
J. Mech. Phys. Solids
,
64
, pp.
223
235
. 10.1016/j.jmps.2013.11.008
39.
Zinszner
,
J. L.
,
Erzar
,
B.
,
Forquin
,
P.
, and
Buzaud
,
E.
,
2015
, “
Dynamic Fragmentation of An Alumina Ceramic Subjected to Shockless Spalling: An Experimental and Numerical Study
,”
J. Mech. Phys. Solids
,
85
, pp.
112
127
. 10.1016/j.jmps.2015.08.014
40.
Patzák
,
B.
,
2012
, “
OOFEM – An Object-Oriented Simulation Tool for Advanced Modeling of Materials and Structures
,”
Acta Polytech.
,
52
(
6
), pp.
59
66
.
41.
Lukić
,
B. B.
,
Saletti
,
D.
, and
Forquin
,
P.
,
2018
, “
On the Processing of Spalling Experiments. Part I: Identification of the Dynamic Tensile Strength of Concrete
,”
J. Dyn. Behavior Mater.
,
4
(
1
), pp.
56
73
. 10.1007/s40870-017-0138-y
42.
Erzar
,
B.
, and
Forquin
,
P.
,
2010
, “
An Experimental Method to Determine the Tensile Strength of Concrete At High Rates of Strain
,”
Exp. Mech.
,
50
(
7
), pp.
941
955
. 10.1007/s11340-009-9284-z
43.
Lu
,
Y. B.
, and
Li
,
Q. M.
,
2011
, “
About the Dynamic Uniaxial Tensile Strength of Concrete-Like Materials
,”
Int. J. Impact Eng.
,
38
(
4
), pp.
171
180
. 10.1016/j.ijimpeng.2010.10.028
44.
Hwang
,
Y. K.
,
Bolander
,
J.
, and
Lim
,
Y. M.
,
2016
, “
Simulation of Concrete Tensile Failure Under High Loading Rates Using Three-Dimensional Irregular Lattice Models
,”
Mech. Mater.
,
101
, pp.
136
146
. 10.1016/j.mechmat.2016.08.002
You do not currently have access to this content.