Abstract

Using surface elasticity theory, this article first analyzes the surface effect on the elastohydrodynamic lubrication (EHL) line contact between an elastic half-plane and a rigid cylindrical punch. In this theory, the surface effect is characterized with two parameters: surface elastic modulus and residual surface stress. The density and viscosity of the lubricant, considered as Newtonian fluid, vary with the fluid pressure. A numerical iterative method is proposed to simultaneously deal with the flow rheology equation, Reynolds equation, load balance equation, and film thickness equation. Then, the fluid pressure and film thickness are numerically determined at the lubricant contact region. Influences of surface elastic modulus, residual surface stress, punch radius, resultant normal load, and entraining velocity on the lubricant film thickness and fluid pressure are discussed. It is found that the surface effect has remarkable influences on the micro-/nano-scale EHL contact of elastic materials.

References

References
1.
Tang
,
C. Z.
, and
Alici
,
G.
,
2011
, “
Evaluation of Length-Scale Effects for Mechanical Behaviour of Micro- and Nanocantilevers: I. Experimental Determination of Length-Scale Factors
,”
J. Phys. D: Appl. Phys.
,
44
(
33
), p.
335501
. 10.1088/0022-3727/44/33/335501
2.
Zhang
,
T. Y.
, and
Xu
,
W. H.
,
2002
, “
Surface Effects on Nanoindentation
,”
J. Mater. Res.
,
17
(
7
), pp.
1715
1720
. 10.1557/JMR.2002.0254
3.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
,
10
(
4
), pp.
853
863
. 10.1557/JMR.1995.0853
4.
Artan
,
R.
, and
Omurtag
,
M.
,
2000
, “
Two Plane Punches on a Nonlocal Elastic Half Plane
,”
Int. J. Eng. Sci.
,
38
(
4
), pp.
395
403
. 10.1016/S0020-7225(99)00053-1
5.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Stresses on Contact Problems at Nanoscale
,”
J. Appl. Phys.
,
101
(
1
), p.
013510
. 10.1063/1.2405127
6.
Mohammadi
,
P.
, and
Sharma
,
P.
,
2012
, “
Atomistic Elucidation of the Effect of Surface Roughness on Curvature-Dependent Surface Energy, Surface Stress, and Elasticity
,”
Appl. Phys. Lett.
,
100
(
13
), p.
133110
. 10.1063/1.3695069
7.
Hu
,
J. J.
,
Sun
,
W. M.
,
Jiang
,
Z. H.
,
Zhang
,
W.
,
Lu
,
J. W.
,
Huo
,
W. T.
,
Zhang
,
Y. S.
, and
Zhang
,
P. X.
,
2017
, “
Indentation Size Effect on Hardness in the Body-Centered Cubic Coarse Grained and Nanocrystalline Tantalum
,”
Mater. Sci. Eng. A
,
686
, pp.
19
25
. 10.1016/j.msea.2017.01.033
8.
Jia
,
N.
,
Yao
,
Y.
,
Yang
,
Y. Z.
, and
Chen
,
S. H.
,
2017
, “
Analysis of Two-Dimensional Contact Problems Considering Surface Effect
,”
Int. J. Solids Struct.
,
125
, pp.
172
183
. 10.1016/j.ijsolstr.2017.07.007
9.
Moradweysi
,
P.
,
Ansari
,
R.
,
Gholami
,
R.
,
Bazdid-Vahdati
,
M.
, and
Rouhi
,
H.
,
2019
, “
Half-Space Contact Problem Considering Strain Gradient and Surface Effects: An Analytical Approach
,”
Zeit. Angew. Math. Mech.
,
99
(
6
), p.
201700190
. 10.1002/zamm.201700190
10.
Li
,
S. H.
,
Yuan
,
W. K.
,
Ding
,
Y.
, and
Wang
,
G. F.
,
2019
, “
Indentation Load-Depth Relation for an Elastic Layer With Surface Tension
,”
Math. Mech. Solids
,
24
(
4
), pp.
1147
1160
. 10.1177/1081286518774090
11.
Xiao
,
X. Z.
, and
Yu
,
L.
,
2019
, “
Cross-sectional Nano-Indentation of Ion-Irradiated Steels: Finite Element Simulations Based on the Strain-Gradient Crystal Plasticity Theory
,”
Int. J. Eng. Sci.
,
143
, pp.
56
72
. 10.1016/j.ijengsci.2019.06.015
12.
Li
,
X. B.
, and
Mi
,
C. W.
,
2019
, “
Effects of Surface Tension and Steigmann–Ogden Surface Elasticity on Hertzian Contact Properties
,”
Int. J. Eng. Sci.
,
145
, p.
103165
. 10.1016/j.ijengsci.2019.103165
13.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
. 10.1007/BF00261375
14.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
. 10.1088/0957-4484/11/3/301
15.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams
,”
Appl. Phys. Lett.
,
90
(
23
), p.
231904
. 10.1063/1.2746950
16.
Hu
,
Z. L.
,
Lee
,
K. Y.
, and
Li
,
X. F.
,
2018
, “
Crack in an Elastic Thin-Film With Surface Effect
,”
Int. J. Eng. Sci.
,
123
, pp.
158
173
. 10.1016/j.ijengsci.2017.11.015
17.
Grutin
,
M. E.
, and
Murdoch
,
A. I.
,
1976
, “
Effect of Surface Stress on Wave Propagation in Solids
,”
J. Appl. Phys.
,
47
(
10
), pp.
4414
4421
. 10.1063/1.322403
18.
Gurtin
,
M. E.
,
Markenscoff
,
X.
, and
Thurston
,
R. N.
,
1976
, “
Effect of Surface Stress on the Natural Frequency of Thin Crystals
,”
Appl. Phys. Lett.
,
29
(
9
), pp.
529
530
. 10.1063/1.89173
19.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
. 10.1016/0020-7683(78)90008-2
20.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2298
2327
. 10.1016/j.jmps.2008.01.001
21.
Ru
,
C. Q.
,
2010
, “
Simple Geometrical Explanation of Gurtin-Murdoch Model of Surface Elasticity With Clarification of Its Related Versions
,”
Sci. China Phys. Mech.
,
53
(
3
), pp.
536
544
. 10.1007/s11433-010-0144-8
22.
Pinyochotiwong
,
Y.
,
Rungamornrat
,
J.
, and
Senjuntichai
,
T.
,
2013
, “
Rigid Frictionless Indentation on Elastic Half Space With Influence of Surface Stresses
,”
Int. J. Eng. Sci.
,
71
, pp.
15
35
. 10.1016/j.ijengsci.2013.04.005
23.
He
,
L. H.
, and
Li
,
Z. R.
,
2006
, “
Impact of Surface Stress on Stress Concentration
,”
Int. J. Solids Struct.
,
43
(
20
), pp.
6208
6219
. 10.1016/j.ijsolstr.2005.05.041
24.
Lim
,
C. W.
,
Li
,
Z. R.
, and
He
,
L. H.
,
2006
, “
Size Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion due to Interface Stress
,”
Int. J. Solids Struct.
,
43
(
17
), pp.
5055
5065
. 10.1016/j.ijsolstr.2005.08.007
25.
Shen
,
J. J.
,
2019
, “
Axisymmetric Boussinesq Problem of a Transversely Isotropic Half Space With Surface Effects
,”
Math. Mech. Solids
,
24
(
4
), pp.
1425
1437
. 10.1177/1081286518797387
26.
Gao
,
X.
,
Hao
,
F.
,
Fang
,
D.
, and
Huang
,
Z.
,
2013
, “
Boussinesq Problem With the Surface Effect and Its Application to Contact Mechanics at the Nanoscale
,”
Int. J. Solids Struct.
,
50
(
16–17
), pp.
2620
2630
. 10.1016/j.ijsolstr.2013.04.007
27.
Long
,
J. M.
,
Wang
,
G. F.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
,
2012
, “
Two-Dimensional Hertzian Contact Problem With Surface Tension
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1588
1594
. 10.1016/j.ijsolstr.2012.03.017
28.
Long
,
J. M.
, and
Wang
,
G. F.
,
2013
, “
Effects of Surface Tension on Axisymmetric Hertzian Contact Problem
,”
Mech. Mater.
,
56
, pp.
65
70
. 10.1016/j.mechmat.2012.09.003
29.
Luo
,
J. B.
,
Huang
,
P.
,
Wen
,
S. Z.
, and
Li
,
K. Y.
,
1999
, “
Characteristics of Fluid Lubricant Films at the Nano-scale
,”
ASME J. Tribol.
,
121
(
4
), pp.
872
878
. 10.1115/1.2834149
30.
Firouz-Abadi
,
R. D.
,
Mohammad-Khani
,
H.
, and
Rahmanian
,
M.
,
2017
, “
Vibration and Stability Analysis of DWCNT-Based Spinning Nanobearings
,”
Int. J. Struct. Stab. Dyn.
,
17
(
9
), p.
1750102
. 10.1142/S0219455417501024
31.
Zahir
,
M. H.
,
Iwamoto
,
Y.
,
Rahman
,
M. M.
,
Aziz
,
M. A.
,
Chowdhury
,
S.
,
Ahmad
,
S. H. A.
, and
Qamaruddin
,
M.
,
2018
, “
CaO-containing LaCO3OH Nanogears and Their Luminescence and De-NOx Properties
,”
J. Am. Ceram. Soc
,
101
(
12
), pp.
5363
5377
. 10.1111/jace.15861
32.
Elsharkawy
,
A. A.
,
Holmes
,
M. J. A.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2006
, “
Micro-elastohydrodynamic Lubrication of Coated Cylinders Using Coupled Differential Deflection Method
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
220
(
J1
), pp.
29
41
. 10.1243/13506501J10005
33.
Woloszynski
,
T.
,
Touche
,
T.
,
Podsiadlo
,
P.
,
Stachowiak
,
G. W.
,
Cayer-Barrioz
,
J.
, and
Mazuyer
,
D.
,
2019
, “
Effects of Nanoscale Ripple Texture on Friction and Film Thickness in EHL Contacts
,”
Tribol. Lett.
,
67
(
1
), p.
16
. 10.1007/s11249-018-1130-y
34.
Shirvani
,
K. A.
,
Mosleh
,
M.
, and
Smith
,
S. T.
,
2016
, “
Nanopolishing by Colloidal Nanodiamond in Elastohydrodynamic Lubrication
,”
J. Nanopart. Res.
,
18
(
8
), p.
248
. 10.1007/s11051-016-3526-7
35.
Grubin
,
A. N.
,
1949
,
Fundamentals of the Hydrodynamic Theory of Lubrication of Heavily Loaded Cylindrical Surfaces
,
Central Scientific Research Institute for Technology and Mechanical Engineering
, p.
115
166
Book No. 30 (Moscow), DSIR Trans No. 337.
36.
Archard
,
J. F.
, and
Cowking
,
E. W.
,
1966
, “
Elastohydrodynamic Lubrication of Point Contacts
,”
Proc. I. Mech. E.
,
180
, pp.
47
56
.
37.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution to the Elastohydrodynamic Problem
,”
J. Mech. Eng. Sci.
,
1
(
1
), pp.
6
15
. 10.1243/JMES_JOUR_1959_001_004_02
38.
Chittenden
,
R. J.
,
Dowson
,
D.
,
Dunn
,
J. F.
, and
Taylor
,
C. M.
,
1985
, “
A Theoretical Analysis of the Isothermal Elastohydrodynamic Lubrication of Concentrated Contacts I. Direction of Lubricant Entrainment Coincident With the Major Axis of the Hertzian Contact Ellipse
,”
Proc. R. Soc. London A
,
397
(
1813
), pp.
245
269
. 10.1098/rspa.1985.0014
39.
Cheng
,
H. S.
,
1965
, “
A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders
,”
ASLE Trans.
,
8
(
4
), pp.
397
410
. 10.1080/05698196508972110
40.
Zhu
,
D.
, and
Wen
,
S. Z.
,
1984
, “
A Full Numerical Solution for the Thermoelastohydrodynamic Problem in Elliptical Contacts
,”
ASME J. Tribol.
,
106
(
2
), pp.
246
254
. 10.1115/1.3260895
41.
Liu
,
M. Y.
,
Xu
,
P. D.
, and
Yan
,
C. N.
,
2019
, “
Parametric Studies of Mechanical Power Loss for Helical Gear Pair Using a Thermal Elastohydrodynamic Lubrication Model
,”
ASME J. Tribol.
,
141
(
1
), p.
011502
. 10.1115/1.4040723
42.
Kumar
,
R.
,
Azam
,
M. S.
, and
Ghosh
,
S. K.
,
2019
, “
Influence of Stochastic Roughness on Performance of a Rayleigh Step Bearing Operating Under Thermo-Elastohydrodynamic Lubrication Considering Shear Flow Factor
,”
Tribol. Int.
,
134
, pp.
264
280
. 10.1016/j.triboint.2019.01.025
43.
Peng
,
Y. J.
,
Zhao
,
N.
,
Zhang
,
M. Q.
,
Li
,
W.
, and
Zhou
,
R. C.
,
2018
, “
Non-Newtonian Thermal Elastohydrodynamic Simulation of Helical Gears Considering Modification and Misalignment
,”
Tribol. Int.
,
124
, pp.
46
60
. 10.1016/j.triboint.2018.03.025
44.
Xiao
,
H. F.
,
Sun
,
Y. Y.
, and
Xu
,
J. W.
,
2018
, “
Investigation into the Normal Contact Stiffness of Rough Surface in Line Contact Mixed Elastohydrodynamic Lubrication
,”
Tribol. Trans.
,
61
(
4
), pp.
742
753
. 10.1080/10402004.2017.1404177
45.
Morales-Espejel
,
G. E.
, and
Quiñonez
,
A. F.
,
2019
, “
On the Complementary Function Amplitude for Film Thickness in Micro-EHL
,”
Tribol. Int.
,
131
, pp.
631
636
. 10.1016/j.triboint.2018.11.024
46.
Habchi
,
W.
,
2019
, “
A Schur-Complement Model-Order-Reduction Technique for the Finite Element Solution of Transient Elastohydrodynamic Lubrication Problems
,”
Adv. Eng. Software
,
127
, pp.
28
37
. 10.1016/j.advengsoft.2018.10.007
47.
Chu
,
L. M.
,
Chen
,
C. Y.
,
Tee
,
C. K.
,
Chen
,
Q. D.
, and
Li
,
W. L.
,
2014
, “
Elastohydrodynamic Lubrication Analysis for Transversely Isotropic Coating Layer
,”
ASME J. Tribol.
,
136
(
3
), p.
031502
. 10.1115/1.4027210
48.
Eremeyev
,
V. A.
, and
Altenbach
,
H.
,
2014
, “
Equilibrium of a Second-Gradient Fluid and an Elastic Solid With Surface Stresses
,”
Meccanica
,
49
(
11
), pp.
2635
2643
. 10.1007/s11012-013-9851-3
49.
Li
,
S.
, and
Fan
,
H.
,
2015
, “
On Multiscale Moving Contact Line Theory
,”
Proc. R. Soc. A
,
471
(
2179
), p.
20150224
. 10.1098/rspa.2015.0224
50.
Shivakumara
,
I. S.
,
Suma
,
S. P.
, and
Chavaraddi
,
K. B.
,
2006
, “
Onset of Surface-Tension-Driven Convection in Superposed Layers of Fluid and Saturated Porous Medium
,”
Arch. Mech.
,
58
(
2
), pp.
71
92
.
51.
Arpanahi
,
R. A.
,
Hosseini-Hashemi
,
S.
,
Rahmanian
,
S.
,
Hashemi
,
S. H.
, and
Ahmadi-Savadkoohi
,
A.
,
2019
, “
Nonlocal Surface Energy Effect on Free Vibration Behavior of Nanoplates Submerged in Incompressible Fluid
,”
Thin Wall. Struct.
,
143
, p.
106212
. 10.1016/j.tws.2019.106212
52.
Ansari
,
R.
,
Gholami
,
R.
,
Norouzzadeh
,
A.
, and
Darabi
,
M. A.
,
2015
, “
Surface Stress Effect on the Vibration and Instability of Nanoscale Pipes Conveying Fluid Based on a Size-Dependent Timoshenko Beam Model
,”
Acta Mech. Sin.
,
31
(
5
), pp.
708
719
. 10.1007/s10409-015-0435-4
53.
Wang
,
L.
,
2010
, “
Vibration Analysis of Fluid-Conveying Nanotubes With Consideration of Surface Effects
,”
Phys. E
,
43
(
1
), pp.
437
439
. 10.1016/j.physe.2010.08.026
54.
Dai
,
M.
,
Yang
,
H. B.
, and
Peter
,
S.
,
2019
, “
Stress Concentration Around an Elliptical Hole With Surface Tension Based on the Original Gurtin–Murdoch Model
,”
Mech. Mater.
,
135
, pp.
144
148
. 10.1016/j.mechmat.2019.05.009
55.
Yang
,
Y.
,
Hu
,
Z. L.
, and
Li
,
X. F.
,
2020
, “
Nanoscale Mode-III Interface Crack in a Bimaterial With Surface Elasticity
,”
Mech. Mater.
,
140
, p.
103246
. 10.1016/j.mechmat.2019.103246
56.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-inhomogeneities
,”
Appl. Phys. Lett.
,
82
(
4
), pp.
535
537
. 10.1063/1.1539929
57.
Lei
,
D. X.
,
Wang
,
L. Y.
, and
Ou
,
Z. Y.
,
2012
, “
Elastic Analysis for Nanocontact Problem With Surface Stress Effects Under Shear Load
,”
J. Nanomater.
,
2012
, p.
505034
. 10.1155/2012/505034
58.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
,
2007
, “
Analytical Solution for Size-Dependent Elastic Field of a Nanoscale Circular Inhomogeneity
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
568
574
. 10.1115/1.2424242
59.
Sharma
,
P.
, and
Wheeler
,
L. T.
,
2007
, “
Size-Dependent Elastic State of Ellipsoical Nano-inclusions Incorporating Surface/Interface Tension
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
447
454
. 10.1115/1.2338052
60.
Cahn
,
J. W.
, and
Larche
,
F.
,
1982
, “
Surface Stress and the Chemical Equilibrium of Small Crystals
,”
Acta Metall.
,
30
(
1
), pp.
51
56
. 10.1016/0001-6160(82)90043-8
61.
Nix
,
W. D.
, and
Gao
,
H. J.
,
1998
, “
An Atomistic Interpretation of Interface Stress
,”
Scripta Mater.
,
39
(
12
), pp.
1653
1661
. 10.1016/S1359-6462(98)00352-2
62.
Cammarata
,
R. C.
,
Sieradzki
,
K.
, and
Spaepen
,
F.
,
2000
, “
Simple Model for Interface Stress
,”
J. Appl. Phys.
,
87
(
3
), pp.
1227
1234
. 10.1063/1.372001
63.
He
,
J.
, and
Lilley
,
C. M.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
. 10.1021/nl0733233
64.
Juntarasaid
,
C.
,
Pulngern
,
T.
, and
Chucheepsakul
,
S.
,
2012
, “
Bending and Buckling of Nanowires Including the Effects of Surface Stress and Nonlocal Elasticity
,”
Phys. E
,
46
, pp.
68
76
. 10.1016/j.physe.2012.08.005
65.
Wang
,
L. Y.
,
Han
,
W.
,
Wang
,
S. L.
,
Wang
,
L. H.
, and
Xin
,
Y. P.
,
2016
, “
Nano-contact Problem With Surface Effects on Triangle Distribution Loading
,”
J. Appl. Math. Phys.
,
4
(
11
), pp.
2047
2060
. 10.4236/jamp.2016.411204
66.
Long
,
J. M.
,
Ding
,
Y.
,
Yuan
,
W. K.
,
Chen
,
W.
, and
Wang
,
G. F.
,
2017
, “
General Relations of Indentations on Solids With Surface Tension
,”
ASME J. Appl. Mech.
,
84
(
5
), p.
051007
. 10.1115/1.4036214
67.
Wang
,
X.
, and
Schiavone
,
P.
,
2013
, “
Surface Effects in the Deformation of an Anisotropic Elastic Material With Nano-sized Elliptical Hole
,”
Mech. Res. Commun.
,
52
, pp.
57
61
. 10.1016/j.mechrescom.2013.06.007
68.
Zhao
,
X. J.
, and
Rajapakse
,
R. K. N. D.
,
2009
, “
Analytical Solutions for a Surface-Loaded Isotropic Elastic Layer With Surface Energy Effects
,”
Int. J. Eng. Sci.
,
47
(
11–12
), pp.
1433
1444
. 10.1016/j.ijengsci.2008.12.013
69.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
, 2nd ed.,
Marcel Dekker
,
New York
.
70.
Roelands
,
C.
,
1966
,
Correlation Aspects of the Viscosity-Temperature-Pressure Relationship of Lubrication Oils
,
Technische Hogeschool Delf
,
The Netherlands
.
71.
Houpert
,
L.
,
1985
, “
New Results of Traction Force Calculation in Elastohydrodynamic Contacts
,”
ASME J. Tribol.
,
107
(
2
), pp.
241
248
. 10.1115/1.3261033
72.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication, the Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
,
Oxford
.
73.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
2000
,
Table of Integrals, Series, and Products
,
Academic
,
New York
.
74.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Combridge University Press
,
Cambridge
.
75.
Yang
,
P. R.
, and
Wen
,
S. Z.
,
1990
, “
A Forward Iterative Numerical Method for Steady-State Elastohydrodynamically Lubricated Line Contacts
,”
Tribol. Int.
,
23
(
1
), pp.
17
22
. 10.1016/0301-679X(90)90067-Y
76.
Erdogan
,
F.
, and
Gupta
,
G. D.
,
1972
, “
On the Numerical Solution of Singular Integral Equations
,”
Quart. Appl. Math.
,
29
, pp.
525
534
.
77.
Zhao
,
D. M.
, and
Liu
,
J. L.
,
2017
, “
New Insights on the Deflection and Internal Forces of a Bending Nanobeam
,”
Chin. Phys. Lett.
,
34
(
9
), p.
096201
. 10.1088/0256-307X/34/9/096201
78.
Wang
,
Z. J.
,
Yu
,
C. J.
, and
Wang
,
Q.
,
2015
, “
Model of Elastohydrodynamic Lubrication for Multilayered Materials
,”
ASME J. Tribol.
,
137
(
1
), p.
011501
. 10.1115/1.4028408
You do not currently have access to this content.