Abstract

Artificial neural network (ANN) models are used to learn the nonlinear constitutive laws based on indirectly measurable data. The real input and output of the ANN model are derived from indirect data using a mechanical system, which is composed of several subsystems including the ANN model. As the ANN model is coupled with other subsystems, the input of the ANN model needs to be determined during the training. This approach integrates measurable data, mechanics, and ANN models so that the ANN models can be trained without direct data which is usually not available from experiments. Two examples are provided as an illustration of the proposed approach. The first example uses two-dimensional (2D) finite element (FE) analysis to train an ANN model to learn the nonlinear in-plane shear constitutive law. The second example applies a continuum damage model to train an ANN model to learn the damage accumulation law. The results show that the trained ANN models achieve great accuracy based on the proposed approach.

References

References
1.
Yu
,
W.
,
2016
, “
A Unified Theory for Constitutive Modeling of Composites
,”
J. Mech. Mater. Struct.
,
11
(
4
), pp.
379
411
. 10.2140/jomms.2016.11.379
2.
Liu
,
X.
,
Rouf
,
K.
,
Peng
,
B.
, and
Yu
,
W.
,
2017
, “
Two-Step Homogenization of Textile Composites Using Mechanics of Structure Genome
,”
Compos. Struct.
,
171
(
1
), pp.
252
262
. 10.1016/j.compstruct.2017.03.029
3.
Hu
,
H.-T.
,
Lin
,
W.-P.
, and
Tu
,
F.-T.
,
2015
, “
Failure Analysis of Fiber-Reinforced Composite Laminates Subjected to Biaxial Loads
,”
Compos. Part B: Eng.
,
83
(
15
), pp.
153
165
. 10.1016/j.compositesb.2015.08.045
4.
Liu
,
X.
,
Gasco
,
F.
,
Goodsell
,
J.
, and
Yu
,
W.
,
2019
, “
Initial Failure Strength Prediction of Woven Composites Using a New Yarn Failure Criterion Constructed by Deep Learning
,”
Compos. Struct.
,
230
(
15
), p.
111505
. 10.1016/j.compstruct.2019.111505
5.
Gotlib
,
V. A.
,
Sato
,
T.
, and
Beltzer
,
A. I.
,
2000
, “
Neural Computations of Effective Response of Random Composites
,”
Int. J. Solids Struct.
,
37
(
33
), pp.
4527
4538
. 10.1016/S0020-7683(99)00161-4
6.
Lefik
,
M.
,
Boso
,
D.
, and
Schrefler
,
B.
,
2009
, “
Artificial Neural Networks in Numerical Modelling of Composites
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
21–26
), pp.
1785
1804
. 10.1016/j.cma.2008.12.036
7.
Le
,
B.
,
Yvonnet
,
J.
, and
He
,
Q.-C.
,
2015
, “
Computational Homogenization of Nonlinear Elastic Materials Using Neural Networks
,”
Int. J. Numer. Methods Eng.
,
104
(
12
), pp.
1061
1084
. 10.1002/nme.4953
8.
Liu
,
Z.
, and
Wu
,
C.
,
2019
, “
Exploring the 3D Architectures of Deep Material Network in Data-Driven Multiscale Mechanics
,”
J. Mech. Phys. Solids
,
127
, pp.
20
46
. 10.1016/j.jmps.2019.03.004
9.
Jung
,
S.
, and
Ghaboussi
,
J.
,
2006
, “
Characterizing Rate-Dependent Material Behaviors in Self-Learning Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
1–3
), pp.
608
619
. 10.1016/j.cma.2006.06.006
10.
Wang
,
K.
, and
Sun
,
W.
,
2018
, “
A Multiscale Multi-Permeability Poroplasticity Model Linked by Recursive Homogenizations and Deep Learning
,”
Comput. Methods Appl. Mech. Eng.
,
334
(
1
), pp.
337
380
. 10.1016/j.cma.2018.01.036
11.
Bessa
,
M.
,
Bostanabad
,
R.
,
Liu
,
Z.
,
Hu
,
A.
,
Apley
,
D. W.
,
Brinson
,
C.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2017
, “
A Framework for Data-Driven Analysis of Materials Under Uncertainty: Countering the Curse of Dimensionality
,”
Comput. Methods Appl. Mech. Eng.
,
320
(
15
), pp.
633
667
. 10.1016/j.cma.2017.03.037
12.
Acar
,
P.
,
2020
, “
Machine Learning Reinforced Crystal Plasticity Modeling Under Experimental Uncertainty
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, AIAA, p.
1152
.
13.
Huang
,
D. Z.
,
Xu
,
K.
,
Farhat
,
C.
, and
Darve
,
E.
,
2019
, “
Predictive Modeling With Learned Constitutive Laws From Indirect Observations
,” e-print .
14.
Arnold
,
S. M.
,
Piekenbrock
,
M.
,
Ricks
,
T. M.
, and
Stuckner
,
J.
,
2020
, “
Multiscale Analysis of Composites Using Surrogate Modeling and Information Optimal Designs
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, AIAA, p.
1863
.
15.
Frankel
,
A. L.
,
Jones
,
R. E.
,
Alleman
,
C.
, and
Templeton
,
J. A.
,
2019
, “
Predicting the Mechanical Response of Oligocrystals With Deep Learning
,”
Comput. Mater. Sci.
,
169
, p.
109099
. 10.1016/j.commatsci.2019.109099
16.
Ghaboussi
,
J.
,
Pecknold
,
D. A.
,
Zhang
,
M.
, and
Haj-Ali
,
R. M.
,
1998
, “
Autoprogressive Training of Neural Network Constitutive Models
,”
Int. J. Numer. Methods Eng.
,
42
(
1
), pp.
105
126
. 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
17.
Hahn
,
H. T.
, and
Tsai
,
S. W.
,
1973
, “
Nonlinear Elastic Behavior of Unidirectional Composite Laminae
,”
J. Compos. Mater.
,
7
(
1
), pp.
102
118
. 10.1177/002199837300700108
18.
Zhang
,
L.
, and
Yu
,
W.
,
2017
, “
Constitutive Modeling of Damageable Brittle and Quasi-Brittle Materials
,”
Int. J. Solids Struct.
,
117
(
15
), pp.
80
90
. 10.1016/j.ijsolstr.2017.04.002
19.
Pei
,
J.-S.
, and
Mai
,
E. C.
,
2008
, “
Constructing Multilayer Feedforward Neural Networks to Approximate Nonlinear Functions in Engineering Mechanics Applications
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061002
. 10.1115/1.2957600
20.
Nielsen
,
M. A.
,
2015
,
Neural Networks and Deep Learning
, Vol.
25
,
Determination Press
.
21.
Liu
,
X.
,
Tao
,
F.
, and
Yu
,
W.
,
2020
, “
A Neural Network Enhanced System for Learning Nonlinear Constitutive Relation of Fiber Reinforced Composites
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
.
22.
Jacob
,
F.
, and
Ted
,
B.
,
2007
,
A First Course in Finite Elements
,
Wiley
,
New York
.
23.
Jiang
,
F.
,
Deo
,
A.
, and
Yu
,
W.
,
2018
, “
A Composite Beam Theory for Modeling Nonlinear Shear Behavior
,”
Eng. Struct.
,
155
(
15
), pp.
73
90
. 10.1016/j.engstruct.2017.10.051
24.
Liu
,
X.
,
Gasco
,
F.
,
Yu
,
W.
,
Goodsell
,
J.
, and
Rouf
,
K.
,
2019
, “
Multiscale Analysis of Woven Composite Structures in MSC.Nastran
,”
Adv. Eng. Softw.
,
135
, p.
102677
. 10.1016/j.advengsoft.2019.04.008
25.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
(
1
), pp.
686
707
. 10.1016/j.jcp.2018.10.045
26.
Chaboche
,
J.-L.
,
1988
, “
Continuum Damage Mechanics: Part I—General Concepts
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
59
64
. 10.1115/1.3173661
27.
Gao
,
Z.
,
Zhang
,
L.
, and
Yu
,
W.
,
2018
,
VUMAT of a Generalized Standard Continuum Damage Model, https://cdmhub.org/resources/1662
28.
Atkinson
,
K. E.
,
2008
,
An Introduction to Numerical Analysis
,
John Wiley & Sons
,
New York
.
29.
Tao
,
F.
,
Liu
,
X.
,
Du
,
H.
, and
Yu
,
W.
,
2020
, “
Physics-Informed Artificial Neural Network Approach for Axial Compression Buckling Analysis of Thin-Walled Cylinder
,”
AIAA J.
10.2514/1.J058765
You do not currently have access to this content.