Abstract

In the standard fracture test specimens, the crack-parallel normal stress is negligible. However, its effect can be strong, as revealed by a new type of experiment, briefly named the gap test. It consists of a simple modification of the standard three-point-bend test whose main idea is to use plastic pads with a near-perfect yield plateau to generate a constant crack-parallel compression and install the end supports with a gap that closes only when the pads yield. This way, the test beam transits from one statically determinate loading configuration to another, making evaluation unambiguous. For concrete, the gap test showed that moderate crack-parallel compressive stress can increase up to 1.8 times the Mode I (opening) fracture energy of concrete, and reduce it to almost zero on approach to the compressive stress limit. To model it, the fracture process zone must be characterized tensorially. We use computer simulations with crack-band microplane model, considering both in-plane and out-of-plane crack-parallel stresses for plain and fiber-reinforced concretes, and anisotropic shale. The results have broad implications for all quasibrittle materials, including shale, fiber composites, coarse ceramics, sea ice, foams, and fone. Except for negligible crack-parallel stress, the line crack models are shown to be inapplicable. Nevertheless, as an approximation ignoring stress tensor history, the crack-parallel stress effect may be introduced parametrically, by a formula. Finally we show that the standard tensorial strength models such as Drucker–Prager cannot reproduce these effects realistically.

References

1.
Nguyen
,
H.
,
Pathirage
,
M.
,
Rezaei
,
M.
,
Issa
,
M.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2020
, “
New Perspective of Fracture Mechanics Inspired by Novel Test With Crack-Parallel Compression
,”
Proceedings of the National Academy of Sciences
, in press.
2.
Griffith
,
A.
,
1921
, “
The Phenomena of Rupture and Flow in Solid, Philosophical Translation
,”
Royal Society of London, Series A
, Vol.
221
.
3.
Barenblatt
,
G.
,
1959
, “
Equilibrium Cracks Formed on a Brittle Fracture
,”
Dokl. Ak. N.
,
127
, pp.
47
50
.
4.
Barenblatt
,
G.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
(
1
), pp.
55
129
.
5.
Cusatis
,
G.
,
Bažant
,
Z.
, and
Cedolin
,
L.
,
2003
, “
Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: II. Computation and Validation
,”
J. Eng. Mech. – ASCE
,
129
(
12
), pp.
1449
1458
. 10.1061/(ASCE)0733-9399(2003)129:12(1449)
6.
Nemat-Nasser
,
S.
, and
Horii
,
H.
,
1982
, “
Compression-Induced Nonplanar Crack Extension With Application to Splitting, Exfoliation, and Rockburst
,”
J. Geophys. Res.: Solid Earth
,
87
(
B8
), pp.
6805
6821
. 10.1029/JB087iB08p06805
7.
Madenci
,
E.
,
1991
, “
Slightly Open, Penny-Shaped Crack in An Infinite Solid Under Biaxial Compression
,”
Theor. Appl. Frac. Mech.
,
16
(
3
), pp.
215
222
. 10.1016/0167-8442(91)90045-L
8.
Lehner
,
F.
, and
Kachanov
,
M.
,
2001
,
On Modelling of “Winged” Cracks Forming Under Compression
,
Springer
,
Dordrecht, Netherlands
, pp.
73
75
.
9.
Sahouryeh
,
E.
,
Dyskin
,
A.
, and
Germanovich
,
L.
,
2002
, “
Crack Growth Under Biaxial Compression
,”
Eng. Fract. Mech.
,
69
(
18
), pp.
2187
2198
. 10.1016/S0013-7944(02)00015-2
10.
Wong
,
R.
,
Tang
,
C.
,
Chau
,
K.
, and
Lin
,
P.
,
2002
, “
Splitting Failure in Brittle Rocks Containing Pre-Existing Flaws Under Uniaxial Compression
,”
Eng. Fract. Mech.
,
69
(
17
), pp.
1853
1871
. 10.1016/S0013-7944(02)00065-6
11.
Zhou
,
X. P.
, and
Wang
,
J. H.
,
2005
, “
Study on the Coalescence Mechanism of Splitting Failure of Crack-Weakened Rock Subjected to Compressive Loads
,”
Mech. Res. Commun.
,
32
(
2
), pp.
161
171
. 10.1016/j.mechrescom.2004.06.003
12.
Golshani
,
A.
,
Okui
,
Y.
,
Oda
,
M.
, and
Takemura
,
T.
,
2006
, “
A Micromechanical Model for Brittle Failure of Rock and Its Relation to Crack Growth Observed in Triaxial Compression Tests of Granite
,”
Mech. Mater.
,
38
(
4
), pp.
287
303
. 10.1016/j.mechmat.2005.07.003
13.
Yang
,
S.
,
Dai
,
Y.
,
Han
,
L.
, and
Jin
,
Z.
,
2009
, “
Experimental Study on Mechanical Behavior of Brittle Marble Samples Containing Different Flaws Under Uniaxial Compression
,”
Eng. Fract. Mech.
,
76
(
12
), pp.
1833
1845
. 10.1016/j.engfracmech.2009.04.005
14.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
15.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Matériaux et construction
,
16
(
3
), pp.
155
177
. 10.1007/BF02486267
16.
Bažant
,
Z. P.
,
Cervenka
,
J.
, and
Wierer
,
M.
,
2001
, “
Equivalent Localization Element for Crack Band Model and As Alternative to Elements With Embedded Discontinuities
,”
Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures
,
Cachan, France
,
May 28–June 1
,
Pergamon
,
Oxford, UK
.
17.
Bažant
,
Z. P.
, and
Xiang
,
Y.
,
1997
, “
Size Effect in Compression Fracture: Splitting Crack Band Propagation
,”
J. Eng. Mech.
,
123
(
2
), pp.
162
172
. 10.1061/(ASCE)0733-9399(1997)123:2(162)
18.
Christoffersen
,
J.
, and
Hutchinson
,
J.
,
1979
, “
A Class of Phenomenological Corner Theories of Plasticity
,”
J. Mech. Phys. Solids
,
27
(
5
), pp.
465
487
. 10.1016/0022-5096(79)90026-7
19.
Bažant
,
Z. P.
,
1978
, “
Endochronic Inelasticity and Incremental Plasticity
,”
Int. J. Solids Struct.
,
14
(
9
), pp.
691
714
. 10.1016/0020-7683(78)90029-X
20.
Brocca
,
M.
, and
Bažant
,
Z. P.
,
2000
, “
Microplane Constitutive Model and Metal Plasticity
,”
ASME Appl. Mech. Rev.
,
53
(
10
), pp.
265
281
. 10.1115/1.3097329
21.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. I: Formulation
,”
J. Eng. Mech.
,
139
(
12
), pp.
1714
1723
. 10.1061/(ASCE)EM.1943-7889.0000570
22.
Bažant
,
Z. P.
, and
Pfeiffer
,
P. A.
,
1987
, “
Determination of Fracture Energy From Size Effect and Brittleness Number
,”
ACI Mater. J.
,
84
(
6
), pp.
463
480
.
23.
Cusatis
,
G.
, and
Schauffert
,
E. A.
,
2009
, “
Cohesive Crack Analysis of Size Effect
,”
Eng. Fract. Mech
,
76
(
14
), pp.
2163
2173
. 10.1016/j.engfracmech.2009.06.008
24.
Bažant
,
Z. P.
, and
Yu
,
Q.
,
2011
, “
Size-Effect Testing of Cohesive Fracture Parameters and Nonuniqueness of Work-of-Fracture Method
,”
J. Eng. Mech.
,
137
(
8
), pp.
580
588
. 10.1061/(ASCE)EM.1943-7889.0000254
25.
Hoover
,
C. G.
, and
Bažant
,
Z. P.
,
2014
, “
Cohesive Crack, Size Effect, Crack Band and Work-of-Fracture Models Compared to Comprehensive Concrete Fracture Tests
,”
Int. J. Fract.
,
187
(
1
), pp.
133
143
. 10.1007/s10704-013-9926-0
26.
Bažant
,
Z. P.
, and
Kazemi
,
M. T.
,
1990
, “
Size Effect in Fracture of Ceramics and its Use to Determine Fracture Energy and Effective Process Zone Length
,”
J. Am. Ceram. Soc.
,
73
(
7
), pp.
1841
1853
. 10.1111/j.1151-2916.1990.tb05233.x
27.
Shah
,
S. P.
,
1990
, “
Size-Effect Method for Determining Fracture Energy and Process Zone Size of Concrete
,”
Mater. Struct.
,
23
(
6
), p.
461
. 10.1007/BF02472030
28.
Cedolin
,
L.
, and
Cusatis
,
G.
,
2008
, “
Identification of Concrete Fracture Parameters Through Size Effect Experiments
,”
Cem. Concr. Compos.
,
30
(
9
), pp.
788
797
. 10.1016/j.cemconcomp.2008.05.007
29.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. II: Calibration and Verification
,”
J. Eng. Mech.
,
139
(
12
), pp.
1724
1735
. 10.1061/(ASCE)EM.1943-7889.0000571
30.
Caner
,
F. C.
,
Bažant
,
Z. P.
, and
Wendner
,
R.
,
2013
, “
Microplane Model M7f for Fiber Reinforced Concrete
,”
Eng. Fract. Mech.
,
105
, pp.
41
57
. 10.1016/j.engfracmech.2013.03.029
31.
Li
,
C.
,
Caner
,
F. C.
,
Chau
,
V. T.
, and
Bažant
,
Z. P.
,
2017
, “
Spherocylindrical Microplane Constitutive Model for Shale and Other Anisotropic Rocks
,”
J. Mech. Phys. Solids
,
103
, pp.
155
178
. 10.1016/j.jmps.2017.03.006
32.
Bažant
,
Z. P.
,
1984
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
,
110
(
4
), pp.
518
535
. 10.1061/(ASCE)0733-9399(1984)110:4(518)
33.
Bažant
,
Z.
,
1997
, “
Scaling of Quasibrittle Fracture: Asymptotic Analysis
,”
Int. J. Fract.
,
83
(
1
), pp.
19
. 10.1023/A:1007387823522
34.
Bažant
,
Z. P.
,
2002
,
Scaling of Structural Strength
,
CRC Press
,
Boca Raton, FL
.
35.
Bazant
,
Z. P.
, and
Le
,
J.-L.
,
2017
,
Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect
,
Cambridge University Press
,
Cambridge, UK
.
36.
ACI Committee 446
,
1992
,
Fracture Mechanics of Concrete: Concepts, Models and Determination of Material Properties 91
.
37.
Shanley
,
F. R.
,
1947
, “
Inelastic Column Theory
,”
J. Aeronaut. Sci.
,
14
(
5
), pp.
261
268
. 10.2514/8.1346
38.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
1993
, “
Why Direct Tension Test Specimens Break Flexing to the Side
,”
J. Struct. Eng.
,
119
(
4
), pp.
1101
1113
. 10.1061/(ASCE)0733-9445(1993)119:4(1101)
39.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
2010
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
World Scientific
,
Singapore
.
40.
Nakayama
,
J.
,
1965
, “
Direct Measurement of Fracture Energies of Brittle Heterogeneous Materials
,”
J. Am. Ceram. Soc.
,
48
(
11
), pp.
583
587
. 10.1111/j.1151-2916.1965.tb14677.x
41.
Tattersall
,
H. G.
, and
Tappin
,
G.
,
1966
, “
The Work of Fracture and Its Measurement in Metals, Ceramics and Other Materials
,”
J. Mater. Sci.
,
1
(
3
), pp.
296
301
. 10.1007/BF00550177
42.
Hillerborg
,
A.
,
Modéer
,
M.
, and
Petersson
,
P.-E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
. 10.1016/0008-8846(76)90007-7
43.
Grassl
,
P.
,
Xenos
,
D.
,
Nyström
,
U.
,
Rempling
,
R.
, and
Gylltoft
,
K.
,
2013
, “
Cdpm2: A Damage-Plasticity Approach to Modelling the Failure of Concrete
,”
Int. J. Solids Struct.
,
50
(
24
), pp.
3805
3816
. 10.1016/j.ijsolstr.2013.07.008
44.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Q. Appl. Math.
,
10
(
2
), pp.
157
165
. 10.1090/qam/48291
45.
Nadai
,
A.
,
1950
,
Theory of Flow and Fracture of Solids, V1
,
McGraw-Hill
,
New York, NY
.
46.
Rahimi-Aghdam
,
S.
,
Chau
,
V.-T.
,
Lee
,
H.
,
Nguyen
,
H.
,
Li
,
W.
,
Karra
,
S.
,
Rougier
,
E.
,
Viswanathan
,
H.
,
Srinivasan
,
G.
, and
Bažant
,
Z. P.
,
2019
, “
Branching of Hydraulic Cracks Enabling Permeability of Gas or Oil Shale With Closed Natural Fractures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
5
), pp.
1532
1537
. 10.1073/pnas.1818529116
47.
Mazars
,
J.
,
1986
, “
A Model of a Unilateral Elastic Damageable Material and its Application to Concrete
,”
Fract. Toughness Fract. Energy Concr.
, pp.
61
71
.
48.
Pijaudier-Cabot
,
G.
, and
Bažant
,
Z. P.
,
1987
, “
Nonlocal Damage Theory
,”
J. Eng. Mech.
,
113
(
10
), pp.
1512
1533
. 10.1061/(ASCE)0733-9399(1987)113:10(1512)
49.
Bažant
,
Z. P.
,
Luo
,
W.
,
Chau
,
V. T.
, and
Bessa
,
M. A.
,
2016
, “
Wave Dispersion and Basic Concepts of Peridynamics Compared to Classical Nonlocal Damage Models
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111004
. 10.1115/1.4034319
50.
Remmers
,
J. J.
,
De Borst
,
R.
,
Verhoosel
,
C. V.
, and
Needleman
,
A.
,
2013
, “
The Cohesive Band Model: A Cohesive Surface Formulation With Stress Triaxiality
,”
Int. J. Fract.
,
181
(
2
), pp.
177
188
. 10.1007/s10704-013-9834-3
51.
Cusatis
,
G.
,
Pelessone
,
D.
, and
Mencarelli
,
A.
,
2011
, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory
,”
Cem. Concr. Compos.
,
33
(
9
), pp.
881
890
. 10.1016/j.cemconcomp.2011.02.011
52.
Cusatis
,
G.
,
Mencarelli
,
A.
,
Pelessone
,
D.
, and
Baylot
,
J.
,
2011
, “
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation
,”
Cem. Concr. Compos.
,
33
(
9
), pp.
891
905
. 10.1016/j.cemconcomp.2011.02.010
53.
Tschegg
,
E.
,
Elser
,
M.
, and
Stanzl-Tschegg
,
S.
,
1995
, “
Biaxial Fracture Tests on Concrete-Development and Experience
,”
Cem. Concr. Compos.
,
17
(
1
), pp.
57
75
. 10.1016/0958-9465(95)95760-W
54.
O’Dowd
,
N.
, and
Shih
,
C.
,
1991
, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter I. Structure of Fields
,”
J. Mech. Phys. Solids
,
39
(
8
), pp.
989
1015
. 10.1016/0022-5096(91)90049-T
55.
O’Dowd
,
N.
, and
Shih
,
C.
,
1992
, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter II. Fracture Applications
,”
J. Mech. Phys. Solids
,
40
(
5
), pp.
939
963
. 10.1016/0022-5096(92)90057-9
56.
Betegón
,
C.
, and
Hancock
,
J.
,
1991
, “
Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
104
110
. 10.1115/1.2897135
57.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
. 10.1016/0022-5096(92)90020-3
58.
Cotterell
,
B.
, and
Rice
,
J.
,
1980
, “
Slightly Curved or Kinked Cracks
,”
Int. J. Fract.
,
16
(
2
), pp.
155
169
. 10.1007/BF00012619
59.
Bažant
,
Z. P.
, and
Beghini
,
A.
,
2006
, “
Stability and Finite Strain of Homogenized Structures Soft in Shear: Sandwich or Fiber Composites, and Layered Bodies
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1571
1593
. 10.1016/j.ijsolstr.2005.03.060
60.
Fett
,
T.
,
2008
,
Stress Intensity Factors — T-Stresses—Weight Functions
,
KIT Scientific Publishing
,
Karlsruhe, Germany
.
61.
Bažant
,
Z.
,
Gettu
,
R.
, and
Kazemi
,
M.
,
1991
, “
Identification of Nonlinear Fracture Properties From Size Effect Tests and Structural Analysis Based on Geometry-Dependent R-Curves
,”
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
, Vol.
28
,
Elsevier
, pp.
43
51
.
You do not currently have access to this content.