Abstract

Elastic and acoustic metamaterials can sculpt dispersion of waves through resonances. In turn, resonances can give rise to negative effective properties, usually localized around the resonance frequencies, which support band gaps at subwavelength frequencies (i.e., below the Bragg-scattering limit). However, the band gaps width correlates strongly with the resonators’ mass and volume, which limits their functionality in applications. Trampoline phenomena have been numerically and experimentally shown to broaden the operational frequency ranges of two-dimensional, pillar-based metamaterials through perforation. In this work, we demonstrate trampoline phenomena in lightweight and planar lattices consisting of arrays of Archimedean spirals in unit cells. Spiral-based metamaterials have been shown to support different band gap opening mechanisms, namely, Bragg-scattering, local resonances and inertia amplification. Here, we numerically analyze and experimentally realize trampoline phenomena in planar metasurfaces for different lattice tessellations. Finally, we carry out a comparative study between trampoline pillars and spirals and show that trampoline spirals outperform the pillars in lightweight, compactness and operational bandwidth.

References

1.
Maldovan
,
M.
,
2013
, “
Sound and Heat Revolutions in Phononics
,”
Nature
,
503
(
7475
), pp.
209
217
. 10.1038/nature12608
2.
Kim
,
S.-H.
, and
Das
,
M. P.
,
2012
, “
Seismic Waveguide of Metamaterials
,”
Mod. Phys. Lett. B
,
26
(
17
), p.
1250105
. 10.1142/S0217984912501059
3.
Brûlé
,
S.
,
Javelaud
,
E.
,
Enoch
,
S.
, and
Guenneau
,
S.
,
2014
, “
Experiments on Seismic Metamaterials: Molding Surface Waves
,”
Phys. Rev. Lett.
,
112
(
13
), p.
133901
. 10.1103/PhysRevLett.112.133901
4.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Chan
,
C.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
. 10.1126/science.289.5485.1734
5.
Yang
,
Z.
,
Dai
,
H.
,
Chan
,
N.
,
Ma
,
G.
, and
Sheng
,
P.
,
2010
, “
Acoustic Metamaterial Panels for Sound Attenuation in the 50–1000 Hz Regime
,”
Appl. Phys. Lett.
,
96
(
4
), p.
041906
. 10.1063/1.3299007
6.
Mei
,
J.
,
Ma
,
G.
,
Yang
,
M.
,
Yang
,
Z.
,
Wen
,
W.
, and
Sheng
,
P.
,
2012
, “
Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound
,”
Nat. Commun.
,
3
(
1
), p.
756
. 10.1038/ncomms1758
7.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Sound Transmission Loss of Metamaterial-Based Thin Plates With Multiple Subwavelength Arrays of Attached Resonators
,”
J. Sound Vib.
,
331
(
25
), pp.
5408
5423
. 10.1016/j.jsv.2012.07.016
8.
Ma
,
F.
,
Wu
,
J. H.
,
Huang
,
M.
,
Zhang
,
W.
, and
Zhang
,
S.
,
2015
, “
A Purely Flexible Lightweight Membrane-Type Acoustic Metamaterial
,”
J. Phys. D: Appl. Phys.
,
48
(
17
), p.
175105
. 10.1088/0022-3727/48/17/175105
9.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J.
,
Khelif
,
A.
, and
Deymier
,
P.
,
2004
, “
Tunable Filtering and Demultiplexing in Phononic Crystals With Hollow Cylinders
,”
Physi. Rev. E
,
69
(
4
), p.
046608
. 10.1103/PhysRevE.69.046608
10.
Rupp
,
C. J.
,
Dunn
,
M. L.
, and
Maute
,
K.
,
2010
, “
Switchable Phononic Wave Filtering, Guiding, Harvesting, and Actuating in Polarization-Patterned Piezoelectric Solids
,”
Appl. Phys. Lett.
,
96
(
11
), p.
111902
. 10.1063/1.3341197
11.
Torres
,
M.
,
Montero de Espinosa
,
F.
,
Garcia-Pablos
,
D.
, and
Garcia
,
N.
,
1999
, “
Sonic Band Gaps in Finite Elastic Media: Surface States and Localization Phenomena in Linear and Point Defects
,”
Phys. Rev. Lett.
,
82
(
15
), pp.
3054
3057
. 10.1103/PhysRevLett.82.3054
12.
Rupp
,
C. J.
,
Evgrafov
,
A.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2007
, “
Design of Phononic Materials/structures for Surface Wave Devices Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
34
(
2
), pp.
111
121
. 10.1007/s00158-006-0076-0
13.
Sklan
,
S. R.
,
2015
, “
Splash, Pop, Sizzle: Information Processing With Phononic Computing
,”
AIP Adv.
,
5
(
5
), p.
053302
. 10.1063/1.4919584
14.
Bilal
,
O. R.
,
Foehr
,
A.
, and
Daraio
,
C.
,
2017
, “
Bistable Metamaterial for Switching and Cascading Elastic Vibrations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
18
), pp.
4603
4606
. 10.1073/pnas.1618314114
15.
Ambati
,
M.
,
Fang
,
N.
,
Sun
,
C.
, and
Zhang
,
X.
,
2007
, “
Surface Resonant States and Superlensing in Acoustic Metamaterials
,”
Phys. Rev. B
,
75
(
19
), p.
195447
. 10.1103/PhysRevB.75.195447
16.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2008
, “
Acoustic Cloaking in Two Dimensions: a Feasible Approach
,”
New J. Phys.
,
10
(
6
), p.
063015
. 10.1088/1367-2630/10/6/063015
17.
Sigalas
,
M.
, and
Economou
,
E.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
(
3
), pp.
141
143
. 10.1016/0038-1098(93)90888-T
18.
Kushwaha
,
M.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
. 10.1103/PhysRevLett.71.2022
19.
Rupin
,
M.
,
Lemoult
,
F.
,
Lerosey
,
G.
, and
Roux
,
P.
,
2014
, “
Experimental Demonstration of Ordered and Disordered Multiresonant Metamaterials for Lamb Waves
,”
Phys. Rev. Lett.
,
112
(
23
), p.
234301
. 10.1103/PhysRevLett.112.234301
20.
Yilmaz
,
C.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
,
2007
, “
Phononic Band Gaps Induced by Inertial Amplification in Periodic Media
,”
Phys. Rev. B
,
76
(
5
), p.
054309
. 10.1103/PhysRevB.76.054309
21.
Christensen
,
J.
,
Kadic
,
M.
,
Kraft
,
O.
, and
Wegener
,
M.
,
2015
, “
Vibrant Times for Mechanical Metamaterials
,”
MRS Commun.
,
5
(
03
), pp.
453
462
. 10.1557/mrc.2015.51
22.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), p.
16001
. 10.1038/natrevmats.2016.1
23.
Ma
,
G.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
. 10.1126/sciadv.1501595
24.
Foehr
,
A.
,
Bilal
,
O. R.
,
Huber
,
S. D.
, and
Daraio
,
C.
,
2018
, “
Spiral-Based Phononic Plates: From Wave Beaming to Topological Insulators
,”
Phys. Rev. Lett.
,
120
(
20
), p.
205501
. 10.1103/PhysRevLett.120.205501
25.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
, Vol.
173
,
Springer Science & Business Media
,
New York
.
26.
Khelif
,
A.
, and
Adibi
,
A.
,
2015
,
Phononic Crystals: Fundamentals and Applications
,
Springer
,
New York
.
27.
Zhao
,
J.
,
Bonello
,
B.
, and
Boyko
,
O.
,
2016
, “
Focusing of the Lowest-Order Antisymmetric Lamb Mode Behind a Gradient-Index Acoustic Metalens With Local Resonators
,”
Phys. Rev. B
,
93
(
17
), p.
174306
. 10.1103/PhysRevB.93.174306
28.
Cha
,
J.
, and
Daraio
,
C.
,
2018
, “
Electrical Tuning of Elastic Wave Propagation in Nanomechanical Lattices At MHz Frequencies
,”
Nat. Nanotechnol.
,
13
(
11
), p.
1
.
29.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Larabi
,
H.
,
Vasseur
,
J.
, and
Hladky-Hennion
,
A.
,
2008
, “
Low-Frequency Gaps in a Phononic Crystal Constituted of Cylindrical Dots Deposited on a Thin Homogeneous Plate
,”
Phys. Rev. B
,
78
(
10
), p.
104105
. 10.1103/PhysRevB.78.104105
30.
Wu
,
T.-T.
,
Huang
,
Z.-G.
,
Tsai
,
T.-C.
, and
Wu
,
T.-C.
,
2008
, “
Evidence of Complete Band Gap and Resonances in a Plate With Periodic Stubbed Surface
,”
Appl. Phys. Lett.
,
93
(
11
), p.
111902
. 10.1063/1.2970992
31.
Khelif
,
A.
,
Achaoui
,
Y.
,
Benchabane
,
S.
,
Laude
,
V.
, and
Aoubiza
,
B.
,
2010
, “
Locally Resonant Surface Acoustic Wave Band Gaps in a Two-dimensional Phononic Crystal of Pillars on a Surface
,”
Phys. Rev. B
,
81
(
21
), p.
214303
. 10.1103/PhysRevB.81.214303
32.
Assouar
,
M. B.
,
Sun
,
J.-H.
,
Lin
,
F.-S.
, and
Hsu
,
J.-C.
,
2014
, “
Hybrid Phononic Crystal Plates for Lowering and Widening Acoustic Band Gaps
,”
Ultrasonics
,
54
(
8
), pp.
2159
2164
. 10.1016/j.ultras.2014.06.008
33.
Oudich
,
M.
,
Djafari-Rouhani
,
B.
,
Pennec
,
Y.
,
Assouar
,
M. B.
, and
Bonello
,
B.
,
2014
, “
Negative Effective Mass Density of Acoustic Metamaterial Plate Decorated With Low Frequency Resonant Pillars
,”
J. Appl. Phys.
,
116
(
18
), p.
184504
. 10.1063/1.4901462
34.
Pourabolghasem
,
R.
,
Mohammadi
,
S.
,
Eftekhar
,
A. A.
,
Khelif
,
A.
, and
Adibi
,
A.
,
2014
, “
Experimental Evidence of High-Frequency Complete Elastic Bandgap in Pillar-Based Phononic Slabs
,”
Appl. Phys. Lett.
,
105
(
23
), p.
231908
. 10.1063/1.4903997
35.
Li
,
Y.
,
Chen
,
T.
,
Wang
,
X.
,
Xi
,
Y.
, and
Liang
,
Q.
,
2015
, “
Enlargement of Locally Resonant Sonic Band Gap by Using Composite Plate-Type Acoustic Metamaterial
,”
Phys. Lett. A
,
379
(
5
), pp.
412
416
. 10.1016/j.physleta.2014.11.028
36.
Jin
,
Y.
,
Fernez
,
N.
,
Pennec
,
Y.
,
Bonello
,
B.
,
Moiseyenko
,
R. P.
,
Hémon
,
S.
,
Pan
,
Y.
, and
Djafari-Rouhani
,
B.
,
2016
, “
Tunable Waveguide and Cavity in a Phononic Crystal Plate by Controlling Whispering-Gallery Modes in Hollow Pillars
,”
Phys. Rev. B
,
93
(
5
), p.
054109
. 10.1103/PhysRevB.93.054109
37.
Jin
,
Y.
,
Pennec
,
Y.
,
Pan
,
Y.
, and
Djafari-Rouhani
,
B.
,
2016
, “
Phononic Crystal Plate With Hollow Pillars Connected by Thin Bars
,”
J. Phys. D: Appl. Phys.
,
50
(
3
), p.
035301
. 10.1088/1361-6463/50/3/035301
38.
Li
,
S.
,
Chen
,
T.
,
Wang
,
X.
,
Li
,
Y.
, and
Chen
,
W.
,
2016
, “
Expansion of Lower-Frequency Locally Resonant Band Gaps Using a Double-sided Stubbed Composite Phononic Crystals Plate With Composite Stubs
,”
Phys. Lett. A
,
380
(
25
), pp.
2167
2172
. 10.1016/j.physleta.2016.03.027
39.
Shu
,
F.
,
Liu
,
Y.
,
Wu
,
J.
, and
Wu
,
Y.
,
2016
, “
Band Gap in Tubular Pillar Phononic Crystal Plate
,”
Ultrasonics
,
71
(
9
), pp.
172
176
. 10.1016/j.ultras.2016.06.011
40.
Qureshi
,
A.
,
Li
,
B.
, and
Tan
,
K.
,
2016
, “
Numerical Investigation of Band Gaps in 3d Printed Cantilever-in-Mass Metamaterials
,”
Sci. Rep.
,
6
, p.
28314
. 10.1038/srep28314
41.
Guo
,
Y.
,
Hettich
,
M.
, and
Dekorsy
,
T.
,
2017
, “
Guiding of Elastic Waves in a Two-Dimensional Graded Phononic Crystal Plate
,”
New J. Phys.
,
19
(
1
), p.
013029
. 10.1088/1367-2630/aa5703
42.
Li
,
Y.
,
Zhu
,
L.
, and
Chen
,
T.
,
2017
, “
Plate-Type Elastic Metamaterials for Low-Frequency Broadband Elastic Wave Attenuation
,”
Ultrasonics
,
73
(
1
), pp.
34
42
. 10.1016/j.ultras.2016.08.019
43.
Colombi
,
A.
,
Roux
,
P.
,
Guenneau
,
S.
,
Gueguen
,
P.
, and
Craster
,
R. V.
,
2016
, “
Forests as a Natural Seismic Metamaterial: Rayleigh Wave Bandgaps Induced by Local Resonances
,”
Sci. Rep.
,
6
, p.
19238
. 10.1038/srep19238
44.
Zhao
,
H.-J.
,
Guo
,
H.-W.
,
Gao
,
M.-X.
,
Liu
,
R.-Q.
, and
Deng
,
Z.-Q.
,
2016
, “
Vibration Band Gaps in Double-Vibrator Pillared Phononic Crystal Plate
,”
J. Appl. Phys.
,
119
(
1
), p.
014903
. 10.1063/1.4939484
45.
Zhang
,
S.
,
Hui Wu
,
J.
, and
Hu
,
Z.
,
2013
, “
Low-Frequency Locally Resonant Band-Gaps in Phononic Crystal Plates With Periodic Spiral Resonators
,”
J. Appl. Phys.
,
113
(
16
), p.
163511
. 10.1063/1.4803075
46.
Badreddine Assouar
,
M.
, and
Oudich
,
M.
,
2012
, “
Enlargement of a Locally Resonant Sonic Band Gap by Using Double-Sides Stubbed Phononic Plates
,”
Appl. Phys. Lett.
,
100
(
12
), p.
123506
. 10.1063/1.3696050
47.
Zhao
,
H.-J.
,
Guo
,
H.-W.
,
Li
,
B.-Y.
,
Deng
,
Z.-Q.
, and
Liu
,
R.-Q.
,
2015
, “
Flexural Vibration Band Gaps in a Double-Side Phononic Crystal Plate
,”
J. Appl. Phys.
,
118
(
4
), p.
044906
. 10.1063/1.4927627
48.
Lixia
,
L.
, and
Anjiang
,
C.
,
2016
, “
Control of the Low-Frequency Vibrations of Elastic Metamaterial Shafts With Discretized Arc-Rubber Layers
,”
Jpn. J. Appl. Phys.
,
55
(
6
), p.
067301
. 10.7567/JJAP.55.067301
49.
Bilal
,
O. R.
, and
Hussein
,
M. I.
,
2013
, “
Trampoline Metamaterial: Local Resonance Enhancement by Springboards
,”
Appl. Phys. Lett.
,
103
(
11
), p.
111901
. 10.1063/1.4820796
50.
Bilal
,
O. R.
,
Foehr
,
A.
, and
Daraio
,
C.
,
2017
, “
Observation of Trampoline Phenomena in 3d-Printed Metamaterial Plates
,”
Extreme Mech. Lett.
,
15
, pp.
103
107
. 10.1016/j.eml.2017.06.004
51.
Coffy
,
E.
,
Lavergne
,
T.
,
Addouche
,
M.
,
Euphrasie
,
S.
,
Vairac
,
P.
, and
Khelif
,
A.
,
2015
, “
Ultra-Wide Acoustic Band Gaps in Pillar-Based Phononic Crystal Strips
,”
J. Appl. Phys.
,
118
(
21
), p.
214902
. 10.1063/1.4936836
52.
Spadoni
,
A.
,
Ruzzene
,
M.
,
Gonella
,
S.
, and
Scarpa
,
F.
,
2009
, “
Phononic Properties of Hexagonal Chiral Lattices
,”
Wave Motion
,
46
(
7
), pp.
435
450
. 10.1016/j.wavemoti.2009.04.002
53.
Bigoni
,
D.
,
Guenneau
,
S.
,
Movchan
,
A. B.
, and
Brun
,
M.
,
2013
, “
Elastic Metamaterials With Inertial Locally Resonant Structures: Application to Lensing and Localization
,”
Phys. Rev. B
,
87
(
17
), p.
174303
. 10.1103/PhysRevB.87.174303
54.
Zhu
,
R.
,
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2014
, “
Negative Refraction of Elastic Waves At the Deep-Subwavelength Scale in a Single-Phase Metamaterial
,”
Nat. Commun.
,
5
(
1
), p.
5510
. 10.1038/ncomms6510
55.
Bilal
,
O. R.
,
Foehr
,
A.
, and
Daraio
,
C.
,
2017
, “
Reprogrammable Phononic Metasurfaces
,”
Adv. Mater.
,
29
(
39
), p.
1700628
.
56.
Jiang
,
T.
, and
He
,
Q.
,
2017
, “
Dual-Directionally Tunable Metamaterial for Low-Frequency Vibration Isolation
,”
Appl. Phys. Lett.
,
110
(
2
), p.
021907
. 10.1063/1.4974034
57.
Kan
,
T.
,
Isozaki
,
A.
,
Kanda
,
N.
,
Nemoto
,
N.
,
Konishi
,
K.
,
Kuwata-Gonokami
,
M.
,
Matsumoto
,
K.
, and
Shimoyama
,
I.
,
2013
, “
Spiral Metamaterial for Active Tuning of Optical Activity
,”
Appl. Phys. Lett.
,
102
(
22
), p.
221906
. 10.1063/1.4809533
58.
Liu
,
Z.
,
Du
,
H.
,
Li
,
J.
,
Lu
,
L.
,
Li
,
Z.-Y.
, and
Fang
,
N. X.
,
2018
, “
Nano-Kirigami With Giant Optical Chirality
,”
Sci. Adv.
,
4
(
7
), p.
eaat4436
. 10.1126/sciadv.aat4436
59.
Bilal
,
O. R.
, and
Hussein
,
M. I.
,
2011
, “
Ultrawide Phononic Band Gap for Combined in-Plane and Out-of-Plane Waves
,”
Phys. Rev. E
,
84
(
5
), p.
065701
. 10.1103/PhysRevE.84.065701
60.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
Dover Publications, Inc
.
You do not currently have access to this content.