Abstract

A popular framework in continuum mechanics modeling of soft tissues is the use of an additive split of the total strain energy function (W) into the contribution of the isotropic matrix (Wiso) and the anisotropic collagen fiber networks (Waniso): W = Wiso + Waniso. This paper presents specialized strain energy functions for the Waniso part of this additive split, in the form of Waniso(I4) or Waniso(I4, I6) for one or two fiber families, respectively, accounting for the deformation and contribution of the collagen fibers’ network. The models have their origins in the statistical mechanics treatment of chains network based on a non-Gaussian, a Gaussian, and a modified Gaussian approach. The models are applied to extant experimental stress-stretch data, across multi-scales from a single collagen molecule to the network ensemble, demonstrating an excellent agreement. Due to the direct physical structural basis of the model parameters and therefore their objectivity and uniqueness, these models are proposed as advantageous options next to the existing phenomenological continuum-based strain energy functions in the literature. In addition, and while not exploited in this paper, since the model parameters are inherent structural properties of the collagen molecular chains, they may be established a priori via imaging or molecular techniques. Therefore, the proposed models allow the important possibility of precluding the need for destructive mechanical tests and calibration a posteriori, instead of paving the way for predicting the mechanical behavior of the collagen network from pre-established structural parameters. These features render the proposed models as attractive choices for application in continuum-based modeling of collagenous soft tissues.

References

References
1.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(
1–3
), pp.
1
48
. 10.1023/A:1010835316564
2.
Freed
,
A. D.
,
Einstein
,
D. R.
, and
Vesely
,
I.
,
2005
, “
Invariant Formulation for Dispersed Transverse Isotropy in Aortic Heart Valves: an Efficient Means for Modeling Fiber Splay
,”
Biomech. Model. Mechanobiol.
,
4
(
2–3
), pp.
100
117
. 10.1007/s10237-005-0069-8
3.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientation
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
. 10.1098/rsif.2005.0073
4.
Lanir
,
Y.
,
2017
, “
Multi-scale Structural Modeling of Soft Tissues Mechanics and Mechanobiology
,”
J. Elast.
,
129
(
1–2
), pp.
7
48
. 10.1007/s10659-016-9607-0
5.
Kuhl
,
E.
,
Garikipati
,
K.
,
Arruda
,
E. M.
, and
Grosh
,
K.
,
2005
, “
Remodeling of Biological Tissue: Mechanically Induced Reorientation of a Transversely Isotropic Chain Network
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1552
1573
. 10.1016/j.jmps.2005.03.002
6.
Misof
,
K.
,
Rapp
,
G.
, and
Fratzl
,
P.
,
1997
, “
A New Molecular Model for Collagen Elasticity Based on Synchrotron X-Ray Scattering Evidence
,”
Biophys. J.
,
72
(
3
), pp.
1376
1381
. 10.1016/S0006-3495(97)78783-6
7.
Buehler
,
M. J.
, and
Wong
,
S. Y.
,
2007
, “
Entropic Elasticity Controls Nanomechanics of Single Tropocollagen Molecules
,”
Biophys. J.
,
93
(
1
), pp.
37
43
. 10.1529/biophysj.106.102616
8.
Hillgärtner
,
M.
,
Linka
,
K.
, and
Itskov
,
M.
,
2018
, “
Worm-Like Chain Model Extensions for Highly Stretched Tropocollagen Molecules
,”
J. Biomech.
,
80
, pp.
129
135
. 10.1016/j.jbiomech.2018.08.034
9.
Linka
,
K.
,
Hillgärtner
,
M.
, and
Itskov
,
M.
,
2018
, “
Fatigue of Soft Fibrous Tissues: Multi-Scale Mechanics and Constitutive Modelling
,”
Acta Biomater.
,
71
, pp.
398
410
. 10.1016/j.actbio.2018.03.010
10.
Hamdia
,
K. M.
,
Marino
,
M.
,
Zhuang
,
X.
,
Wriggers
,
P.
, and
Rabczuk
,
T.
,
2019
, “
Sensitivity Analysis for the Mechanics of Tendons and Ligaments: Investigation on the Effects of Collagen Structural Properties via a Multiscale Modelling Approach
,”
Int. J. Numer. Method. Biomed. Eng.
,
35
(
8
), p.
e3209
. 10.1002/cnm.3209
11.
Anssari-Benam
,
A.
, and
Bucchi
,
A.
,
2018
, “
Modeling the Deformation of the Elastin Network in the Aortic Valve
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011004
. 10.1115/1.4037916
12.
Kratky
,
O.
, and
Porod
,
G.
,
1949
, “
Röntgenuntersuchungen Gelöster Fadenmoleküle
,”
Recueil Trav. Chim.
,
68
(
12
), pp.
1106
1122
. 10.1002/recl.19490681203
13.
Kovac
,
J.
, and
Crabb
,
C. C.
,
1982
, “
Modified Gaussian Model for Rubber Elasticity. 2. The Wormlike Chain
,”
Macromolecules
,
15
(
2
), pp.
537
541
. 10.1021/ma00230a063
14.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2006
, “
On Worm-Like Chain Models Within the Three-Dimensional Continuum Mechanics Framework
,”
Proc. R. Soc. A
,
462
(
2067
), pp.
749
768
. 10.1098/rspa.2005.1592
15.
Fixman
,
M.
, and
Kovac
,
J.
,
1973
, “
Polymer Conformational Statistics. III. Modified Gaussian Models of Stiff Chains
,”
J. Chem. Phys.
,
58
(
4
), pp.
1564
1568
. 10.1063/1.1679396
16.
Kjær
,
M.
,
2004
, “
Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mechanical Loading
,”
Physiol. Rev.
,
84
(
2
), pp.
649
698
. 10.1152/physrev.00031.2003
17.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N. Y.
, and
Woo
,
S. L.
,
1994
, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
,
12
(
6
), pp.
796
803
. 10.1002/jor.1100120607
18.
Shearer
,
T.
,
Thorpe
,
C. T.
, and
Screen
,
H. R. C.
,
2017
, “
The Relative Compliance of Energy-Storing Tendons May be Due to the Helical Fibril Arrangement of Their Fascicles
,”
J. R. Soc. Interface.
,
14
(
133
), p.
20170261
. 10.1098/rsif.2017.0261
19.
Sasaki
,
N.
, and
Odajima
,
S.
,
1996
, “
Elongation Mechanism of Collagen Fibrils and Force-Strain Relations of Tendon at Each Level of Structural Hierarchy
,”
J. Biomech.
,
29
(
9
), pp.
1131
1136
. 10.1016/0021-9290(96)00024-3
20.
Gentleman
,
E.
,
Lay
,
A. N.
,
Dickerson
,
D. A.
,
Nauman
,
E. A.
,
Livesay
,
G. A.
, and
Dee
,
K. C.
,
2003
, “
Mechanical Characterization of Collagen Fibers and Scaffolds for Tissue Engineering
,”
Biomaterials
,
24
(
21
), pp.
3805
3813
. 10.1016/S0142-9612(03)00206-0
21.
Gautieri
,
A.
,
Vesentini
,
S.
,
Redaelli
,
A.
, and
Buehler
,
M. J.
,
2011
, “
Hierarchical Structure and Nanomechanics of Collagen Microfibrils From the Atomistic Scale up
,”
Nano Lett.
,
11
(
2
), pp.
757
766
. 10.1021/nl103943u
22.
Bozec
,
L.
, and
Horton
,
M.
,
2005
, “
Topography and Mechanical Properties of Single Molecule of Type I Collagen Using Atomic Force Microscopy
,”
Biophys. J.
,
88
(
6
), pp.
4223
4231
. 10.1529/biophysj.104.055228
23.
Ehret
,
A. E.
, and
Itskov
,
M.
,
2007
, “
A Polyconvex Hyperelastic Model for Fiber-Reinforced Materials in Application to Soft Tissues
,”
J. Mater. Sci.
,
42
(
21
), pp.
8853
8863
. 10.1007/s10853-007-1812-6
24.
Buehler
,
M. J.
,
2006
, “
Nature Designs Tough Collagen: Explaining the Nanostructure of Collagen Fibrils
,”
PNAS
,
103
(
33
), pp.
12285
12290
. 10.1073/pnas.0603216103
25.
Beatty
,
M. F.
,
2003
, “
An Average-Stretch Full-Network Model for Rubber Elasticity
,”
J. Elast.
,
70
(
1–3
), pp.
65
86
. 10.1023/B:ELAS.0000005553.38563.91
26.
Cohen
,
A.
,
1991
, “
A Padé Approximant to the Inverse Langevin Function
,”
Rheol. Acta
,
30
(
3
), pp.
270
273
. 10.1007/BF00366640
You do not currently have access to this content.