Abstract

It is well known that the biological composites have superior mechanical properties due to their exquisite multilevel structural hierarchy. However, the underlying mechanisms of the roles of this hierarchical design in the toughness of the biocomposites remain elusive. In this paper, the deformation and fracture mechanism of multilevel hierarchical structures are explored by molecular dynamics simulations. The effects of the multilevel design on fracture toughness, nonlinear deformation of soft matrix, and the crack path pattern were quantitatively analyzed. We showed that the toughness of composites is closely associated with the pattern of the crack path and the nonlinear deformation of the matrix. Additionally, the structure with a higher level of hierarchy exhibit higher toughness, which is less sensitive to the geometrical change of inclusions, such as the aspect ratio and the staggered ratio. This work provides more theoretical evidence of the toughening mechanism of the multilevel hierarchy in fracture toughness of biological materials via new methods of analyzing fracture of multilevel structures and provides guidelines for the design of high-performance engineering materials.

References

References
1.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
. 10.1038/nmat3115
2.
Jäger
,
I.
, and
Fratzl
,
P.
,
2000
, “
Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles
,”
Biophys. J.
,
79
(
4
), pp.
1737
1746
. 10.1016/S0006-3495(00)76426-5
3.
Okumura
,
K.
, and
De Gennes
,
P.-G.
,
2001
, “
Why Is Nacre Strong? Elastic Theory and Fracture Mechanics for Biocomposites With Stratified Structures
,”
Eur. Phys. J. E
,
4
(
1
), pp.
121
127
. 10.1007/s101890170150
4.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. USA
,
100
(
10
), pp.
5597
5600
. 10.1073/pnas.0631609100
5.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
. 10.1016/j.jmps.2004.03.006
6.
Ji
,
B.
, and
Gao
,
H.
,
2006
, “
Elastic Properties of Nanocomposite Structure of Bone
,”
Compos. Sci. Technol.
,
66
(
9
), pp.
1212
1218
. 10.1016/j.compscitech.2005.10.017
7.
Gao
,
H.
,
2006
, “
Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-Like Materials
,”
Int. J. Fract.
,
138
(
1–4
), pp.
101
137
. 10.1007/s10704-006-7156-4
8.
Ji
,
B.
, and
Gao
,
H.
,
2006
,
Handbook of Computational and Theoretical Nanotechnology
,
M.
Rieth
, and
W.
Schommers
, eds., Vol. 9,
American Scientific Publishing
,
Stevenson Ranch
, pp.
456
497
.
9.
Yao
,
H.
, and
Gao
,
H.
,
2007
, “
Multi-Scale Cohesive Laws in Hierarchical Materials
,”
Int. J. Solids Struct.
,
44
(
25–26
), pp.
8177
8193
. 10.1016/j.ijsolstr.2007.06.007
10.
Buehler
,
M. J.
,
Keten
,
S.
, and
Ackbarow
,
T.
,
2008
, “
Theoretical and Computational Hierarchical Nanomechanics of Protein Materials: Deformation and Fracture
,”
Prog. Mater. Sci.
,
53
(
8
), pp.
1101
1241
. 10.1016/j.pmatsci.2008.06.002
11.
Ji
,
B.
, and
Gao
,
H.
,
2010
, “
Mechanical Principles of Biological Nanocomposites
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
77
100
. 10.1146/annurev-matsci-070909-104424
12.
Zhang
,
Z.
,
Zhang
,
Y. W.
, and
Gao
,
H.
,
2011
, “
On Optimal Hierarchy of Load-Bearing Biological Materials
,”
Proc. Biol. Sci.
,
278
(
1705
), pp.
519
525
. 10.1098/rspb.2010.1093
13.
Mirzaeifar
,
R.
,
Dimas
,
L. S.
,
Qin
,
Z.
, and
Buehler
,
M. J.
,
2015
, “
Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment
,”
ACS Biomater. Sci. Eng.
,
1
(
5
), pp.
295
304
. 10.1021/ab500120f
14.
Munch
,
E.
,
Launey
,
M. E.
,
Alsem
,
D. H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2008
, “
Tough, Bio-Inspired Hybrid Materials
,”
Science
,
322
(
5907
), pp.
1516
1520
. 10.1126/science.1164865
15.
Lapidot
,
S.
,
Meirovitch
,
S.
,
Sharon
,
S.
,
Heyman
,
A.
,
Kaplan
,
D. L.
, and
Shoseyov
,
O.
,
2012
, “
Clues for Biomimetics From Natural Composite Materials
,”
Nanomedicine (Lond)
,
7
(
9
), pp.
1409
1423
. 10.2217/nnm.12.107
16.
Peng
,
J.
, and
Cheng
,
Q.
,
2017
, “
High-Performance Nanocomposites Inspired by Nature
,”
Adv. Mater.
,
29
(
45
), p.
1702959
. 10.1002/adma.201702959
17.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
A Study of Fracture Mechanisms in Biological Nano-Composites via the Virtual Internal Bond Model
,”
Mater. Sci. Eng. A
,
366
(
1
), pp.
96
103
. 10.1016/j.msea.2003.08.121
18.
Ji
,
B.
,
2010
, “
An Atomistic Study of the Strength of Protein–Mineral Interface of Biological Materials With a Biomimicking Model System at Nanoscale
,”
J. Comput. Theor. Nanosci.
,
7
(
7
), pp.
1265
1271
. 10.1166/jctn.2010.1479
19.
Bai
,
Z.
,
Su
,
Y.
, and
Ji
,
B.
,
2016
, “
Buckling Behaviors of Staggered Nanostructure of Biological Materials
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
031011
. 10.1115/1.4032116
20.
Liu
,
G.
,
Ji
,
B.
,
Hwang
,
K.-C.
, and
Khoo
,
B. C.
,
2011
, “
Analytical Solutions of the Displacement and Stress Fields of the Nanocomposite Structure of Biological Materials
,”
Compos. Sci. Technol.
,
71
(
9
), pp.
1190
1195
. 10.1016/j.compscitech.2011.03.011
21.
Ni
,
Y.
,
Song
,
Z.
,
Jiang
,
H.
,
Yu
,
S.-H.
, and
He
,
L.
,
2015
, “
Optimization Design of Strong and Tough Nacreous Nanocomposites Through Tuning Characteristic Lengths
,”
J. Mech. Phys. Solids
,
81
, pp.
41
57
. 10.1016/j.jmps.2015.04.013
22.
Wu
,
K.
,
Song
,
Z.
,
He
,
L.
, and
Ni
,
Y.
,
2018
, “
Analysis of Optimal Crosslink Density and Platelet Size Insensitivity in Graphene-Based Artificial Nacres
,”
Nanoscale
,
10
(
2
), pp.
556
565
. 10.1039/C7NR06748H
23.
Wei
,
X.
,
Naraghi
,
M.
, and
Espinosa
,
H. D.
,
2012
, “
Optimal Length Scales Emerging From Shear Load Transfer in Natural Materials: Application to Carbon-Based Nanocomposite Design
,”
ACS Nano
,
6
(
3
), pp.
2333
2344
. 10.1021/nn204506d
24.
Mathiazhagan
,
S.
, and
Anup
,
S.
,
2016
, “
Influence of Platelet Aspect Ratio on the Mechanical Behaviour of Bio-Inspired Nanocomposites Using Molecular Dynamics
,”
J. Mech. Behav. Biomed. Mater.
,
59
, pp.
21
40
. 10.1016/j.jmbbm.2015.12.008
25.
Khandelwal
,
A.
,
Kumar
,
A.
,
Ahluwalia
,
R.
, and
Murali
,
P.
,
2017
, “
Crack Propagation in Staggered Structures of Biological and Biomimetic Composites
,”
Comput. Mater. Sci.
,
126
, pp.
238
243
. 10.1016/j.commatsci.2016.09.029
26.
Gao
,
L.
,
Nie
,
G.
, and
Zhang
,
T.
,
2016
, “
A Study of Hierarchical Biological Composite Structures Via a Coarse-Grained Molecular Dynamics Simulation Approach
,”
Int. J. Appl. Mech.
,
8
(
6
), p.
1650084
. 10.1142/S1758825116500848
27.
Michel
,
J. A.
, and
Yunker
,
P. J.
,
2019
, “
Structural Hierarchy Confers Error Tolerance in Biological Materials
,”
Proc. Natl. Acad. Sci. USA
,
116
(
8
), pp.
2875
2880
. 10.1073/pnas.1813801116
28.
Shao
,
Y.
,
Zhao
,
H.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2012
, “
Discontinuous Crack-Bridging Model for Fracture Toughness Analysis of Nacre
,”
J. Mech. Phys. Solids
,
60
(
8
), pp.
1400
1419
. 10.1016/j.jmps.2012.04.011
29.
Dimas
,
L. S.
,
Bratzel
,
G. H.
,
Eylon
,
I.
, and
Buehler
,
M. J.
,
2013
, “
Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D Printing, and Testing
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4629
4638
. 10.1002/adfm.201300215
30.
Dimas
,
L. S.
, and
Buehler
,
M. J.
,
2013
, “
Tough and Stiff Composites With Simple Building Blocks
,”
J. Mater. Res.
,
28
(
10
), pp.
1295
1303
. 10.1557/jmr.2013.88
31.
Xie
,
Z.
, and
Yao
,
H.
,
2014
, “
Crack Deflection and Flaw Tolerance in “Brick-and-Mortar” Structured Composites
,”
Int. J. Appl. Mech.
,
6
(
2
), p.
1450017
. 10.1142/S1758825114500173
32.
Gao
,
H.
, and
Ji
,
B.
,
2003
, “
Modeling Fracture in Nanomaterials Via a Virtual Internal Bond Method
,”
Eng. Fract. Mech.
,
70
(
14
), pp.
1777
1791
. 10.1016/S0013-7944(03)00124-3
33.
Dimas
,
L. S.
, and
Buehler
,
M. J.
,
2012
, “
Influence of Geometry on Mechanical Properties of Bio-Inspired Silica-Based Hierarchical Materials
,”
Bioinspir. Biomim.
,
7
(
3
), p.
036024
. 10.1088/1748-3182/7/3/036024
34.
Dimas
,
L. S.
, and
Buehler
,
M. J.
,
2014
, “
Modeling and Additive Manufacturing of Bio-Inspired Composites With Tunable Fracture Mechanical Properties
,”
Soft Matter
,
10
(
25
), pp.
4436
4442
. 10.1039/c3sm52890a
35.
Libonati
,
F.
,
Cipriano
,
V.
,
Vergani
,
L.
, and
Buehler
,
M. J.
,
2017
, “
Computational Framework to Predict Failure and Performance of Bone-Inspired Materials
,”
ACS Biomater. Sci. Eng.
,
3
(
12
), pp.
3236
3243
. 10.1021/acsbiomaterials.7b00606
36.
Gao
,
H.
,
1996
, “
A Theory of Local Limiting Speed in Dynamic Fracture
,”
J. Mech. Phys. Solids
,
44
(
9
), pp.
1453
1474
. 10.1016/0022-5096(96)00038-5
37.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
. 10.1006/jcph.1995.1039
38.
Sheppard
,
D.
,
Terrell
,
R.
, and
Henkelman
,
G.
,
2008
, “
Optimization Methods for Finding Minimum Energy Paths
,”
J. Chem. Phys.
,
128
(
13
), p.
134106
. 10.1063/1.2841941
39.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
. 10.1088/0965-0393/18/1/015012
40.
Falk
,
M. L.
, and
Langer
,
J. S.
,
1998
, “
Dynamics of Viscoplastic Deformation in Amorphous Solids
,”
Phys. Rev. E
,
57
(
6
), pp.
7192
7205
. 10.1103/PhysRevE.57.7192
41.
Shimizu
,
F.
,
Ogata
,
S.
, and
Li
,
J.
,
2007
, “
Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations
,”
Mater. Trans.
,
48
(
11
), pp.
2923
2927
. 10.2320/matertrans.MJ200769
42.
Wu
,
Y.
,
Shao
,
Z.
, and
Wang
,
F.
,
2012
, “
Study on Wood Fracture Parallel to the Grains Based on Fractal Geometry
,”
Int. J. Fract.
,
176
(
2
), pp.
163
169
. 10.1007/s10704-012-9732-0
43.
Dlouhý
,
I.
, and
Strnadel
,
B.
,
2008
, “
The Effect of Crack Propagation Mechanism on the Fractal Dimension of Fracture Surfaces in Steels
,”
Eng. Fract. Mech.
,
75
(
3–4
), pp.
726
738
. 10.1016/j.engfracmech.2007.03.038
44.
Su
,
Y.
, and
Lei
,
W. S.
,
2000
, “
Relationship Between Fracture Toughness and Fractal Dimension of Fracture Surface of Steel
,”
Int. J. Fract.
,
106
(
3
), pp.
L43
L48
.
45.
Celli
,
A.
,
Tucci
,
A.
,
Esposito
,
L.
, and
Palmonari
,
C.
,
2003
, “
Fractal Analysis of Cracks in Alumina–Zirconia Composites
,”
J. Eur. Ceram. Soc.
,
23
(
3
), pp.
469
479
. 10.1016/S0955-2219(02)00148-6
46.
Restuccia
,
L.
,
Reggio
,
A.
,
Ferro
,
G. A.
, and
Kamranirad
,
R.
,
2017
, “
Fractal Analysis of Crack Paths Into Innovative Carbon-Based Cementitious Composites
,”
Theor. Appl. Fract. Mech.
,
90
, pp.
133
141
. 10.1016/j.tafmec.2017.03.016
47.
Lyu
,
S.
,
Zhu
,
X.
, and
Qi
,
Z.
,
1994
, “
Correlation Between the Fractal Dimension of Fracture Surfaces and Fracture Toughness for Ductile Polymer Materials
,”
J. Polym. Sci., Part B Polym. Phys.
,
32
(
13
), pp.
2151
2154
. 10.1002/polb.1994.090321303
48.
Karperien
,
A.
,
1999–2013
, “
FracLac for ImageJ
,” http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm, Accessed June 24, 2019.
49.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
. 10.1038/nmeth.2089
50.
Murali
,
P.
,
Bhandakkar
,
T. K.
,
Cheah
,
W. L.
,
Jhon
,
M. H.
,
Gao
,
H.
, and
Ahluwalia
,
R.
,
2011
, “
Role of Modulus Mismatch on Crack Propagation and Toughness Enhancement in Bioinspired Composites
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
,
84
(
1 Pt 2
), p.
015102
. 10.1103/PhysRevE.84.015102
51.
Gorbatikh
,
L.
,
Lomov
,
S. V.
, and
Verpoest
,
I.
,
2010
, “
Original Mechanism of Failure Initiation Revealed Through Modelling of Naturally Occurring Microstructures
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
735
750
. 10.1016/j.jmps.2010.02.007
52.
Zhang
,
Z.
,
Liu
,
B.
,
Huang
,
Y.
,
Hwang
,
K.
, and
Gao
,
H.
,
2010
, “
Mechanical Properties of Unidirectional Nanocomposites With Non-Uniformly or Randomly Staggered Platelet Distribution
,”
J. Mech. Phys. Solids
,
58
(
10
), pp.
1646
1660
. 10.1016/j.jmps.2010.07.004
You do not currently have access to this content.